LEVERAGING THE CLOUD FOR

INTEGRATED NETWORK EXPERIMENTATION

THESIS

Brian A. Beam, Major, USA

AFIT-ENG-14-M-11

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, the Department of Defense, or the United
States Government.

This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.

AFIT-ENG-14-M-11

LEVERAGING THE CLOUD FOR
INTEGRATED NETWORK EXPERIMENTATION

THESIS

Presented to the Faculty
Department of Electrical and Computer Engineering
Graduate School of Engineering and Management
Air Force Institute of Technology
Air University
Air Education and Training Command
in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Cyber Operations

Brian A. Beam, B.S. Economics

Major, USA

March 2014

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT-ENG-14-M-11

LEVERAGING THE CLOUD FOR
INTEGRATED NETWORK EXPERIMENTATION

Brian A. Beam, B.S. Economics

Major, USA
Approved:
//signed// 12 Mar 2014
Douglas Hodson, PhD (Chairman) Date
//signed// 12 Mar 2014
Kenneth Hopkinson, PhD (Member) Date
//signed// 12 Mar 2014

Michael Grimaila, PhD, CISM, CISSP (Member) Date

AFIT-ENG-14-M-11
Abstract

The goal of this research is to determine the feasibility of performing integrated
network experimentation using cloud services. This research uses performance metrics
to compare computing architectures constructed in the cloud to architectures that run
on traditional networks. If so, then cloud network architectures will display the same
expected behavior as traditional network architectures, thus allowing the construction of
networking testbeds at potentially substantial cost savings. Since the Amazon cloud does
not support broadcast or multicast traffic, distributed applications face a challenge. Many
distributed applications use broadcast or multicast to communicate real-time information.
This research includes a case study for developing a distributed network application in
the cloud which overcomes the restriction on broadcast and multicast traffic. During
performance testing, the baseline network and cloud network configurations are provided
statistically equivalent traffic workload. Metrics such as packet loss, delay, jitter and
throughput are compared to determine relative performance. Analysis of the experimental
results shows that in each case, the cloud network configurations performed at or above
the performance level of the baseline network. Therefore, the public cloud infrastructure
is suitable for performing integrated network experimentation. This research continues
Project Everest’s efforts to leverage cloud services for network experimentation. Project
Everest is a framework which aims to combine emulation and cloud infrastructure into
a single testbed using the Amazon Elastic Compute Cloud (EC2). Their tests indicate
satisfactory cloud performance, but they recommend testing cloud network performance

under various workload. This research carries out those performance tests.

v

Table of Contents

Page

Abstract e e e v
Table of Contents e e e v
Listof Figures e viii
I. Problem Statement 1
1.1 Background 1

1.2 Statement of Problem/Issue, 2

1.3 Scope, Limitations, Assumptions 2

1.4 Methodology e 3

1.5 OverviewofThesis e 3

II. Literature Review 4
2.1 Introduction 4
2.2 Review of Network Experimentation Techniques 6
2.2.1 Simulation 6

2211 NS-3 . .. 6

22.1.2 OPNET 7

2.2.1.3 Simulation Summary 7

222 Emulation. 8

2221 Emulab. 8

2222 PlanetLab 9

2223 VINI e 9

2.2.24 Emulation Summary 10

223 OtherMethods 11

2.23.1 Live Network Testing 11

2232 Everest e 11

2.3 Experimental Resources 11
2.3.1 Amazon Web Services (AWS) 12

2.3.2 Distributed Internet Traffic Generator (D-ITG) 13

2.4 Research Contributions, 14

2.5 Conclusion e e 15
2.5.1 Summary of Simulation and Emulation Techniques 15

2.5.2 Research Contributions Summary 15

I1I.

IV.

Methodology 16
3.1 Problem Definition 16
311 Goals 16

3.1.2 Hypothesis 16

3.1.3 Assumptions and Limitations 17

3.1.4 Approach 17

3.2 System Boundaries L 18
3.3 System Services e e 18
3.4 Workload Parameters 19
3.5 System Parameters 20
3.6 Performance Metrics 22
37 Factors. e 23
3.8 Evaluation Technique 23
3.9 Experimental Design o 25
3.10 Data Interpretation 26
3.11 Methodology Summary, 27
Data Analysisand Resultso o 28
4.1 PING Data Analysis e 29
4.2 Traffic Workload Data Analysis. 33
421 PacketLoss 34

422 Delay e 34

423 Jitter ..o oL e e 35

424 Throughput 36

43 Summaryof Findings 37
43.1 ResultsSummary 37
43.1.1 PINGData 37

43.1.2 PacketLoss 38

43.13 Delay. 39

4314 Jittero 40

43.1.5 Throughput 41

432 Scopeoflnference, 41
Distributed Network Application in the Cloud Case Study 51
5.1 Introductiontothe Case Study 51
52 ZeroMQ e e 52
5.3 Publish-Subscribe Messaging Framework 52
5.4 ProofofConcept 54
54.1 Publisher Program 55

Vi

5.4.2 Subscriber Program oL 55

543 ProxyProgram oo 56

5.5 CaseStudyResults 58

VL. Conclusion 60

6.1 Investigative Questions 60

6.2 FutureResearcho 61

6.3 Final Thoughts 61
Appendix A:

Pilot Experiments 63
Appendix B:

Baseline Experiments 72
Appendix C:

Cloud Experiments e 82

Bibliography 108

vii

List of Figures

Figure Page
3.1 Hypothesis e 17
3.2 System Under Test (SUT) and Component Under Test (CUT) 18
3.3 BaselinePlatform o 24
3.4 Cloud VMs in Same Availability Zone 25
3.5 Cloud VMs in Different Availability Zones 26
3.6 Statistical Data Analysis (reprinted from [1]) 27
4.1 PINGResults e 32
4.2 PING Results: BaselinevsCloud 1 32
4.3 Traffic Workload Configurations 34
4.4 Packet Loss:Baseline vs Cloud Platform 1 35
4.5 Packet Loss:Baseline vs Cloud Platform2 36
4.6 Packet Loss:Baseline vs Cloud Platform3 37
4.7 Packet Loss:Baseline vs Cloud Platform4 38
4.8 Delay:Baseline vs Cloud Platform 1 39
4.9 Delay:Baseline vs Cloud Platform2 40
4.10 Delay:Baseline vs Cloud Platform3 41
4.11 Delay:Baseline vs Cloud Platform4 42
4.12 Jitter:Baseline vs Cloud Platform 1 43
4.13 Jitter:Baseline vs Cloud Platform?2 44
4.14 Jitter:Baseline vs Cloud Platform3 45
4.15 lJitter:Baseline vs Cloud Platform4 46
4.16 Throughput:Baseline vs Cloud Platform 1 47
4.17 Throughput:Baseline vs Cloud Platform?2 48

viii

Figure Page

4.18 Throughput:Baseline vs Cloud Platform3 49
4.19 Throughput:Baseline vs Cloud Platform4 50
5.1 Weather Update Publisher 56
5.2 Weather Update Subscriber, 57
5.3 Weather Update Proxy 58
A.1 Plackett-Burman Matrix for 7 Factors 68
A.2 Candidates and Factor Levels 69
A3 D-ITGCommands it 69
A4 Measured Values L L 70
AS Results. 71
B.1 D-ITGCommands 75
B.2 Baseline Experiment Configurations: 1-18 75
B.3 BaselinePingResults o 76
B.4 Baseline Packet Loss o 77
B.5 BaselineDelay 78
B.6 BaselinelJitter 79
B.7 Baseline Throughput 80
B.8 BaselineMean Values 81
C.1 Cloud Ping Tests Results 87
C.2 Cloud Platform 1 Packet Loss 88
C.3 CloudPlatform 1 Delay 89
C.4 CloudPlatform 1 Jitter 90
C.5 Cloud Platform 1 Throughput. 91
C.6 Cloud Platform 1 Mean Values 92
C.7 Cloud Platform 2 Packet Loss 93

X

Figure Page

C.8 CloudPlatform2Delay 94
C.9 CloudPlatform 2 Jitter 95
C.10 Cloud Platform 2 Throughput, 96
C.11 Cloud Platform 2 Mean Values 97
C.12 Cloud Platform 3 Packet Loss 98
C.13 Cloud Platform3 Delay 99
C.14 Cloud Platform 3 Jitter 100
C.15 Cloud Platform 3 Throughput 101
C.16 Cloud Platform 3 Mean Values 102
C.17 Cloud Platform 4 Packet Loss 103
C.18 Cloud Platform4 Delay 104
C.19 Cloud Platform 4 Jitter 105
C.20 Cloud Platform 4 Throughput 106
C.21 Cloud Platform 4 Mean Values 107

LEVERAGING THE CLOUD FOR
INTEGRATED NETWORK EXPERIMENTATION

I. Problem Statement

1.1 Background

He Department of Defense (DoD) recognizes the need to create accurate representa-
T tions of networking environments for the purposes of network planning, optimiza-
tion, testing, and post-incident investigations. These virtual networked environments are
distributed networks that allow communication between multiple systems in real time.
Having a test network that is separate from the production network can be invaluable to
network research and development however, it can also prove to be a costly venture. There-
fore, researchers employ various methods to accomplish these objectives while minimizing
required resources.

The traditional method to creating models of these environments uses discrete-event
packet-level simulation. While this approach provides complete control, absolute repeat-
ability of experiments, ease of use, execution efficiency, scalability, and lower relative cost,
it comes at the cost of detail and realism [2]. For more realistic experiments, network
emulation testbeds have been built out of real hardware networks consisting of hundreds
of devices. Emulation combines real network elements and protocol implementations with
simulated elements such as network links and background traffic. The primary difference is
that simulation executes in virtual time, whereas emulation executes in real time. Although
emulation is more realistic, it is not repeatable. [Integrated network experimentation
combines simulation and emulation into one experiment, each representing different

portions of the topology [3].

Cloud computing platforms provide various resources to consumers at affordable
prices such as storage, compute power, and email services [4]. Commercial cloud services
provide reliable, scalable, and inexpensive computing platforms that can potentially meet
the DoD’s network modeling and experimentation needs. This research investigates the
potential to use a cloud service such as Amazon Web Services (AWS) as a testbed for

prototyping virtual networked environments using integrated network experimentation.

1.2 Statement of Problem/Issue

The goal of this research is to determine the feasibility of using the cloud to perform
integrated network experimentation. That determination is based upon the performance of
the cloud network relative to baseline network configurations under statistically identical

workload conditions. Specifically, the goal is to make the following determinations:

What techniques do researchers use to conduct network experimentation?

What tools are used to implement these techniques?

What effect on cloud testbed performance does physical distance between virtual

machine (VM) instances have?

What is the difference in packet loss, round-trip time, jitter and throughput among

various Amazon cloud platforms, compared to a baseline platform?

1.3 Scope, Limitations, Assumptions

Amazon publishes specifications for VM instance types, but not the underlying
hardware infrastructure that physically power these VMs. Consequently, users are unaware
about details such as the number of VMs that are mapped to any single physical device, and
the amount of available bandwidth between physical devices, among other details. The lack
of knowledge regarding inter-region and intra-region link capacities, along with the latency

and overhead associated with network management and virtualization poses a limitation.

Users can control the creation of VM instances, including their regional locations, but not
the underlying hardware infrastructure itself. Therefore, although this research attempts to
make determinations about the underlying infrastructure’s influence on performance, this
research focuses on the user-controlled aspects of the cloud configurations. Furthermore,
this research does not consider security aspects of the cloud. Finally, this research assumes
that Amazon’s policies for network management and load balancing provide a viable

platform to perform the desired testing.

1.4 Methodology

To determine if the cloud can adequately perform integrated network experimentation,
network performance in the cloud is considered. This research measures the performance
of four unique cloud platforms, and compares them to a baseline platform. Cloud
performance is expected to not be statistically less than baseline performance. The factors
that are expected to have the most impact on performance are the instance type, Amazon
Availability Zone of virtual machine instances, packet size, packet arrival distribution and

traffic protocol.

1.5 Overview of Thesis

The remainder of this thesis is organized as follows. The Literature Review
discusses relevant theories, problems, and methodologies used in other published sources.
Next, the Methodology describes the process of identifying and gathering field data.
Chapter IV consists of data analysis and results. Additionally, this chapter interprets
the validity, reliability and applicability of the results. Chapter V discusses a case study
using distributed network applications in a cloud environment. Finally, the Conclusion
summarizes the main points of the thesis, addresses the research questions and makes future

research recommendations.

II. Literature Review

His chapter reviews literature from published sources that are most relevant to this
T research. The Introduction section provides a topic statement, explanation of key
terms, justification for research and scope of the review. The Introduction section is
followed by a review of network experimentation techniques used by NS-3, OPNET,
Emulab, Planetlab, VINI, Live Network Testing, Everest and techniques implemented
by this research. The Conclusion section summarizes the techniques and research

contributions presented, and introduces the research methodology.

2.1 Introduction

This literature review explores various network experimentation techniques. Tech-
niques are logically grouped under simulation, emulation, and other techniques. Informa-
tion presented is a result of scholarly article searches, and reviewing each article’s sources.
The review is not meant to be exhaustive, but a survey of the most prominent techniques
currently in use. Accurate models of networking environments facilitate network planning,
optimization, testing, and post incident investigations. The cost of deploying a complete
testbed containing multiple networked end hosts, intermediate devices and communica-
tions links can be prohibitive to many organizations. Consequently, network simulation
and emulation are widely used experimental techniques that save time and money in ac-
complishing this task [5]. The remainder of this section explains simulation and emulation,
providing baseline knowledge before proceeding with a review of the techniques.

Simulation uses discrete events to model real world networks at the packet level,
providing repeatable network experimentation in a controlled environment [2]. Since
every parameter of the experiment can be controlled, simulations can scale to large

numbers of elements that can be programmed quickly. Additionally, simulation models

are easy to configure and relatively inexpensive to modify, compared to changing a real
network. These characteristics allow experimenters to build a rapid prototype-and-evaluate
environment, capable of performing analysis of a wide variety of networking scenarios
[2, 5]. Simulation provides this versatility to experimenters through the use of abstraction.
Experimenters are able to choose the level of detail included in the simulation. As more
detail is included within the simulation, the simulation more accurately reflects the real
network. Conversely, as more details are abstracted away from the simulation, generally
speaking, accuracy decreases, but the model is simplified and more efficient to execute.
Thus, experimenters are forced to choose between efficiency and accuracy when deciding
upon the simulation’s level of abstraction without any systematic means of validating the
choice of abstraction [6]. This presents challenges for experimenters. The abstraction
level used in simulation may not allow experimenters to account for low level effects, or
what might seem like small details, such as interrupts associated with heavy traffic loads.
Furthermore, since simulators do not implement real protocols, they cannot integrate real
networking elements into the simulation, thus sacrificing realism in the experiment.
Emulation combines real networking elements such as end hosts and protocol
implementations with simulated elements such as background traffic, network links and
intermediate nodes [2, 7, 8]. This technique allows experimenters to attach end systems
to an emulator, and systems behave exactly as they would on a real network. By adding
real-world interaction, emulation attempts to address the deficiencies of simulation, while
retaining strengths such as repeatability and ease of configuration [7]. Emulation has
generally taken on two forms: network emulation and environment emulation. Network
emulation allows simulated network components to communicate with real-world protocol
implementations. Environment emulation extends the concept further to build an operating
system specific environment in which real-world protocol implementations are executed

directly within the simulator [7]. A key difference between simulation and emulation

is that simulation runs in virtual time, and emulation runs in real time [2]. Discrete-
event computer simulators use events to advance time, meaning that the current time is
immediately advanced to the dispatch time of the next pending event. Emulating real
time is accomplished by modifying the base scheduler to not immediately advance to
the time of the next pending event, but rather to dispatch that event at the appropriate
real-time, by introducing a real-time delay [7]. In other words, events in real time are
synchronized to the real world wall clock. By running tests on a testbed built out of
real hardware, emulation allows experimenters to analyze applications that are affected
by lower-level influences such as device interrupt handling, CPU scheduling or Network
I/O [4]. Consequently, emulation makes integrated network experimentation possible.
Integrated network experimentation combines real and simulated elements in the same
experiment, each representing different portions of the topology, enabling new validation
techniques and larger experiments than possible with real elements alone [2, 9]. The

sections that follow describe simulation and emulation techniques.

2.2 Review of Network Experimentation Techniques

2.2.1 Simulation.

Various discrete-event network simulators exist in the networking research arena.
Examples include OMNeT++, NetSim and GNS3, to name a few. This section highlights
the most popular open source simulator, and the most popular proprietary simulator, ns-3
and OPNET respectively.

2.2.1.1 NS-3.

One of the most popular open source simulators, NS-3 [10], is widely used for research
and education on both IP and non-IP based networks. The majority of its users employ NS-
3 on wireless/IP simulations involving Wi-Fi, WiMAX or LTE, using protocols such as
OLSR, OSPF, BGP and AODV for IP-based applications. The NS-3 simulator is written

in C++ and Python [2], and features a modular, documented software core that allows

user modification and customization. Additionally, it allows software integration, where
users incorporate additional open source networking software, reducing the need to rewrite
simulation models. Finally, NS-3 features virtualization support using lightweight virtual
machines and protocol entities designed to be closer to real computers [5].

Because NS-3 is open source, everyone can contribute to it, customize it, find bugs and
fix them. Though feature rich, NS-3 is not easy to use due to its lack of a graphical user
interface (GUI). Users must type code to generate test scenarios, and understand concepts
of queuing theory to correctly interpret the obtained results [2].

2.2.1.2 OPNET.

OPNET [11] is a commercial network simulation product presented by OPNET
Technologies Inc. Its proprietary natures restricts its usage compared to NS-3. However,
OPNET has many features not present in NS-3. It has a GUI to design and debug simulation
scenarios, a fast discrete event simulation engine, various vendor device models to model
specific networking scenarios, object-oriented modeling, and a fully parallel simulation
kernel [2]. In addition to powerful visual or graphical support for users, parameters can be
adjusted, and experiments can be repeated easily through the GUI [5].

2.2.1.3 Simulation Summary.
To summarize, here are the advantages and disadvantages of using simulators for

networking experiments [4]:

Advantages

1. Simulation experiments are easy to set up and modify

2. Simulation gives the experimenter total control over the simulation and functionality

of each element.

3. Simulation is cost effective, requiring less time through ease of use, and either zero

cost (NS-3) or low-moderately expensive (OPNET).

Disadvantages

1. Like NS-3, many simulators lack a built-in GUI, requiring users to write code.

2. Simulation realism is limited by model detail, which is probably the most important
disadvantage. Experiments requiring fine-grained measurements may give skewed
results or cannot be produced. For example, modeling the traffic and congestion
associated with Internet backbone links might not be possible if those effects are not

included within a simulation model.

3. Some proprietary simulators may be expensive, thus the popularity of NS-3 in

academia.

2.2.2 Emulation.

Just as there are numerous network simulators in use for network experimental
research, there is no shortage of network emulators. This section highlights Emulab,
Planetlab and VINI, the three most widely used emulation platforms.

2.2.2.1 Emulab.

Emulab is a platform that allows researchers to conduct integrated network experimen-
tation on networks and distributed systems. It is a public facility available without charge to
most researchers worldwide [9]. The environment integrates simulation, emulation and live
network experimentation into a single framework, providing experimental control without
sacrificing realism. These resources are available to researchers around the world free of
cost [4]. Although there are over two dozen sites around the world, the primary Emulab
installation is run by the Flux Research Group, part of the School of Computing at the
University of Utah, consisting of hundreds of nodes of various configurations connected
through rack switches [12]. Experimenters use a simple GUI to envoke an ns script to
automatically configure a physical topology within the Emulab testbed, consisting of vir-

tualized host names, IP Addresses, links and nodes [4]. Wide-area network (WAN) links

are emulated within local-area network (LAN) environments by inserting a Dummynet
node between two physical nodes to enforce queue and bandwidth limitations [9]. Emulab
also contains simulation features that allow dynamic addition and removal of experimental
nodes, and changing link characteristics at specific time instances during experiments [4].

Emulab has been widely used in research involving Active Networks, Adaptive
Traffic Equalization, Cloud Computing, Databases, and many more, but lack of resources
1s a primary concern since more experiments exist than available hardware [13, 14].
Resource shortage along with database software and hardware errors are some of Emulab’s
challenges [14].

2.2.2.2 PlanetLab.

PlanetLab is a networking and distributed systems research testbed, consisting of
thousands of geographically distributed nodes worldwide [15, 16]. Most machines are
hosted by research institutions, and all are connected to the internet, giving PlanetLab the
realism of having traffic flow through the actual Internet between nodes that peer with
the Internet’s regional and long haul backbones [16]. Accounts are limited to persons
affiliated with the universities and corporations that host PlanetLab nodes, along with a
limited number of free public services such as a proxy server system and a peer-to-peer
content distribution network.

PlanetLab is an overlay testbed, meaning that every application has a slice of its
resources. This Internet in a Slice (IlaS) construct allows node allocation in various
geographical locations [4]. Because all nodes are connected to the Internet, applications
experience congestion, failures and diverse link behaviors associated with traffic flowing
over the Internet backbone [16].

2.2.2.3 VINIL
VINI is a virtual network infrastructure that supports experiments involving simulta-

neous arbitrary network topologies on a shared physical infrastructure [17]. VINI is im-

plemented on the Planetlab infrastructure, and it enables experiments that run real routing
software, creating real network conditions, controlling network events, and carrying real
traffic. Each node in VINI is a virtual machine (VM) that provides a realistic abstraction of
a real machine, being able to run various operating systems and modifying its kernel, de-
vice drivers, and other subsystems [4]. VINI uses XORP routing [18] and Click forwarding
[19] along with OpenVPN to build virtual topologies that allow arbitrary end hosts to direct
traffic through the VINI infrastructure. VINI also uses network address translation (NAT)
to ensure that traffic returns through VINI. Overall, VINI provides experimental traffic con-
trol by setting up routing tables on virtual routers, and directing traffic through the actual
Internet for realism.
2.2.2.4 Emulation Summary.
To summarize, here are the advantages and disadvantages of using emulators for

networking experiments [4]:
Advantages

1. Emulation provides greater realism and control through lower levels of abstraction
and real hardware. Experimenters are able to specify arbitrary topologies and control

traffic flow.
2. Emulation executes real software on nodes, as they are virtual machines.

3. Emulation uses simulation techniques to mimic components, such as simulating a

1Gbps link to appear as a 100Mbps link.

Disadvantages

1. Despite virtualization techniques, experimenters still face the possibility of the

number of experiments exceeding available resources.

2. Managing and maintaining emulation testbeds is an expensive endeavor. Human

operators may be required when remote troubleshooting is not possible.

10

3. Because emulation provides realism, this reduces experimental controls and makes it

almost impossible it is almost always impossible to reproduce an exact scenario.

2.2.3 Other Methods.
2.2.3.1 Live Network Testing.

Live Network Testing is using existing Internet Links to run experiments. This method
is not as popular because of the inability to reproduce scenarios, unpredictable link qualities
and lack of control over intermediate routers and switches [4].

2.2.3.2 Everest.

Everest is a framework which aims to combine emulation and cloud infrastructure
into one testbed using Amazon EC2, providing realism and experimental control [4]. The
Everest infrastructure consists of a private cluster with a limited number of machines
operated by The ONE research group at Carnegie Mellon University. Their preliminary
research consists of performance tests comparisons between the private cluster and an
identical topology hosted in the Amazon EC2 cloud [4]. Everest’s advantages include
realism and control of network topology, VMs, routing protocols, physical infrastructure
in the private cluster, and the ability to integrate real hosts connected to the internet into
experiments. Disadvantages include lack of a GUI to configure experiment topologies,
difficulty in debugging routing parameters, and no access to Amazon’s underlying

infrastructure.

2.3 Experimental Resources

This section describes the resources employed while conducting the research. It
begins with an introduction to Amazon Web Services (AWS), which is the public cloud
infrastructure that is used to construct the testbed and conduct performance testing. AWS
is followed by a description of the Distributed Internet Traffic Generator (D-ITG), which

generates the traffic loads for the performance tests, and records experimental metrics.

11

2.3.1 Amazon Web Services (AWS).

Amazon offers a variety of services under the umbrella of Amazon Web Services
(AWS). This research uses the Amazon Elastic Compute Cloud (Amazon EC2). Amazon
EC2 [20] provides resizable compute capacity in the cloud, making web-scale computing
easier for developers. This platform allows users to rent computing power to easily
scale up and down to meet business resource needs. Amazon caters to small and
medium businesses, allowing them to rapidly deploy applications and services ranging
from distributed applications to social networking applications to large scale cloud storage
systems [4]. Amazon makes computing resources available through EC2 instances, which
are virtual machines that allow users to specify instance types with various amounts of
virtual CPUs, memory, storage space, and processor. Additionally, Amazon defines a
metric called EC2 Compute Units (ECU) to provide a more standardized comparison
among instance types. Finally, users can choose the Amazon regional location of the
instance, Availability Zone within that region and the operating system to install on the

instance [20]. Some of the main advantages of Amazon EC2 include [4]:

1. Rapid Deployment: An EC2 instance can be configured in just a few minutes,

allowing users to rapidly create many VMs.

2. Superuser Privileges on Instances: Users have root access within the EC2 instances

to install software, modify kernel settings, or any of the low-level subcomponents.

3. Scalable Solutions: Businesses can build scalable solutions for their clients, ranging

from webhosting to billing services to social networking location check-ins.

Although the Amazon cloud has many benefits, it also has challenges. Users are
allowed to create instances in the cloud, but are not allowed to control the underlying
networking infrastructure that connects instances. This limits the administrative control

over setting up the network topology in the cloud testbed. Additionally, users cannot

12

control the amount of bandwidth between nodes. Amazon does not publish performance
data regarding its underlying infrastructure, so users must trust that sufficient bandwidth
exists to support their networking scenario. The same is true regarding simulating or
emulating poor network links. Users may have the need to create a topology that includes
smaller and less reliable network links in order to test application performance in adverse
conditions. The cloud does not have a native way to simulate or emulate link capacities.

Here are some of the notable issues with Amazon EC2 [4]:

1. SLA Guarantees: SLA guarantees a monthly uptime percentage of at least 99.95

percent for Amazon EC2 and Amazon EBS within a region, but does not mention

any network performance guarantees.

2. No Access to Physical Infrastructure: Users are not allowed access to the

physical infrastructure, and Amazon has not made information about the physical
infrastructure public. Therefore, users must rely on Amazon’s virtualization and load

balancing techniques to manage the load on their data centers.

3. Outages: Since the Amazon cloud does not fall under the user’s administrative

control, users must rely on Amazon to resolve any outages to the cloud infrastructure.

4. Broadcast and Multicast Traffic: Amazon does not allow broadcast or multicast traffic

in the cloud. This may affect applications that rely on this form of communication.

2.3.2 Distributed Internet Traffic Generator (D-ITG).

In order to determine the suitability of the Amazon cloud as a DoD networking
testbed, cloud performance under various workloads must be considered. Networks carry
diverse traffic patterns with a mixture of protocols, so the workload generator must reflect
this diversity. The Distributed Internet Traffic Generator (D-ITG) is a platform capable
to produce packet level traffic that accurately replicates appropriate stochastic processes

for both Inter Departure Time (IDT) and Packet Size (PS) random values. These values

13

can assume several distributions that include normal, Pareto, uniform, exponential and
Poisson, among others [21]. Additionally, D-ITG supports IPv4 and IPv6 traffic at the
network, transport and application layer. Finally, D-ITG supports Linux, Windows, OSX
and FreeBSD operating systems [21]. These capabilities plus its free and open source

nature makes D-ITG an ideal choice as a workload generator.

2.4 Research Contributions

This research contributes to the body of knowledge in the following two ways:

1. This research performs extensive cloud performance testing under various workload.
Experimental factors include Virtual Machine (VM) instance type, Amazon Avail-
ability Zones, traffic protocol, packet size and packet distribution. This research uses
performance metrics to determine if architectures constructed in the cloud perform
as well as architectures that run on traditional networks. If so, then cloud network
architectures will display the same expected behavior as traditional network archi-
tectures, allowing the construction of networking testbeds at potentially substantial

cost savings.

2. Since the Amazon cloud does not support broadcast or multicast traffic, distributed
applications face a challenge. Many distributed applications use broadcast or
multicast to communicate real-time information. In many cases, moving a distributed
application into a cloud computing environment demands the use of different
protocols. In the case study for developing a distributed network application in the
cloud, this research identifies a messaging framework for distributed applications in

the cloud, which overcomes the restriction on broadcast and multicast traffic.

14

2.5 Conclusion

2.5.1 Summary of Simulation and Emulation Techniques.

Simulation and emulation are widely used network experimentation techniques.
Discrete-event simulators such as ns-3 and OPNET make experiments easy to set up,
modify, and control, but cannot provide the realism of emulation. Emulation platforms
such as Emulab, PlanetLab and VINI provide realism and greater experimental control, but
have limited resources, and experiments are not deterministic. The Everest project attempts
to address emulation shortfalls by leveraging the cloud. However, Everest has neither
integrated the cloud into its private infrastructure to address the resource shortfall, nor
conducted extensive cloud performance testing under different loads to assess the feasibility
of a testbed hosted entirely in the cloud.

2.5.2 Research Contributions Summary.

This research continues Everest’s efforts to create a cloud networking testbed by
conducting extensive performance testing under different loads. Additionally, it suggests
a framework for distributed applications to overcome the cloud’s policy of restricting
broadcast and multicast traffic. Together, it determines if and how integrated network
experimentation can be conducted entirely in the cloud to support various networking and

distributed application scenarios.

15

III. Methodology

His chapter provides a methodology to evaluate cloud testbed performance. The
T problem definition is presented, including the goals, objectives, and the approach
to achieving those goals. The sections that follow discuss the system boundaries, system
services, workloads, performance metrics, system parameters and factors, followed by the
evaluation technique and experimental design. The Data Interpretation section describes
the statistical method for comparing mean values between the baseline platform and each
of the four cloud platforms. Finally, the summary reviews the main points presented in the

chapter.

3.1 Problem Definition
3.1.1 Goals.
The goal of this work is to determine the feasibility of using the cloud to perform

integrated network experimentation. Specifically, the goal is to:

1. Determine the effect on performance of physical distance between VM instances.

2. Determine the difference in packet loss, round-trip time, jitter and throughput among
various Amazon cloud platforms that are emulating a local area network (LAN).

Compare this to a virtualized baseline platform located on a single host.

3.1.2 Hypothesis.

Figure 3.1 shows an illustration of this research’s hypothesis. The null hypothesis
is that the mean values for packet loss, delay, jitter and throughput for each of the four
cloud platforms are not statistically different than that of the baseline platform. The
alternate hypothesis is that the mean values for packet loss, delay, jitter and throughput

are statistically different than that of the baseline platform.

16

Ho: Mbaseline = Mcloud1 2.3 .4
H,: Mbaseline 7 Mcloud1.2.3.4

Figure 3.1: Hypothesis

3.1.3 Assumptions and Limitations.

Amazon does not publish performance metrics for the underlying hardware that
supports its cloud computing platform. This absence of information regarding inter-
region and intra-region link capacities, latency, and overhead associated with network
management and virtualization is a limitation of this research. Users only control the
creation of virtual machine (VM) instances, including the regional location of the VM,
but not the underlying hardware infrastructure itself. This research assumes that Amazon’s
policies for network management and load balancing provide a viable platform for the
desired testing.

3.1.4 Approach.

This research takes the following approach to achieving the stated goals and testing the
hypothesis. The baseline platform and the various cloud platforms are provided statistically
identical workloads. The baseline platform serves as a standard to which to compare the
performance of the cloud platforms. Differences in performance metrics are identified and
analyzed. The suitability of various platforms for integrated networking experimentation is
assessed. If differences are identified, suitable data transformation processes are developed,
if possible, to translate or normalize data from the emulated environment to be statistically

not different than baseline performance.

17

3.2 System Boundaries
The system under test (SUT) is the network emulation environment. The component

under test (CUT) is the Amazon cloud. Figure 3.2 depicts the SUT and CUT.

System Parameters

A 4

Cloud Physical Cloud Physical
Hardware Topology “Regions”
Networking Devices

Cloud Net
Workload Man/Virtualization Outout
Parameters Software pl
cut Performance
Metrics

Amazon Cloud

VM Instances

D-ITG Software

Network Emulation Environment

Figure 3.2: System Under Test (SUT) and Component Under Test (CUT)

3.3 System Services

The system provides a network emulation service. Success is defined as the extent
to which the performance of the network emulation environment meets or exceeds
the performance of the baseline platform. If the emulation service is successful, its
performance will not be statistically less than that of the baseline platform. If the
performance is statistically worse than that of the baseline platform, then failure has

occurred.

18

3.4 Workload Parameters

The workload for the system is the traffic presented to the SUT for transport.
Network traffic comes in many forms. Some examples include Internet traffic, distributed
applications, and virtual private networks. These traffic workloads are diverse in size,
quantity, and distribution. Additionally, the workload may change over time based
upon social behavior, technology, and many other considerations. It is imperative that
experimental workloads mimic these characteristics in order to create more realistic
scenarios for the SUT. The Distributed Internet Traffic Generator (D-ITG) generates
workloads for the SUT. D-ITG is capable of generating traffic based upon protocol, packet
size, payload and many other attributes. Additionally, the program is capable of measuring
many performance indicators, including one-way delay, round trip time, jitter, packet loss

and throughput [22]. The workload parameters include:

1. Packet Size - Packet size has an affect on network performance. For example,
at a constant rate of 1,000 packets per second, the throughput of a network link
that is transferring 512 Byte packets is expected to be higher than a network link

transporting 256 Byte packets, all else being equal.

2. Packet Arrival Distribution - The packet arrival distribution refers to the manner in

which transmission requests are sent to the system. Offered load arriving at a constant

rate as opposed to Poisson arrivals may have performance implications.

3. Traffic Protocol - Traffic containing the following protocols will be sent to the System

Under Test:

e TCP - Transmission Control Protocol (TCP) is a reliable transport layer
protocol that operates on top of the best effort Internet Protocol (IP) layer
protocol to facilitate host to host communication. To perform services such

as reliable transmission, error detection, flow control and congestion control,

19

TCP requires additional overhead. Consequently, there is a trade off between

the benefits that these services provide and their associated performance costs.

e UDP - In contrast to TCP, the User Datagram Protocol (UDP) is an unreliable
transport layer protocol that operates on top of IP. It is meant to be a lightweight
protocol that does not include the overhead associated with TCP. Because UDP

has less overhead, its throughput performance should be better than TCP.

e ICMP - This experiment uses the Internet Control Message Protocol (ICMP) to

measure round-trip time (RTT) between two nodes.

4. Workload Generator Random Seed - The D-ITG software has nine unique seeds

available. These seeds are altered randomly to ensure that workloads presented to

the SUT are not identical among test runs.

3.5 System Parameters

The parameters discussed below affect the performance of the cloud testbed.

—

. Operating System - All virtual machines run Linux Ubuntu.

2. Processor - All virtual machines run a 64 bit processor.

3. Number of Virtual CPUs - The number of virtual CPUs that a VM has varies by

instance type. Baseline VMs will have one virtual CPU.

4. Number of Amazon EC2 Compute Units (ECU) - ECUs are defined by Amazon

to make it easy to compare CPU capacity between different instance types. This

parameter does not apply to the baseline network.

5. Memory - The amount of memory available varies with VM instance type. Baseline

VMs have 1 GB of memory.

20

6. Storage - VM storage capacity varies with VM instance type. Baseline VMs have
410 GB of storage.

7. Network Resource Reservation - Amazon makes network performance promises

based upon VM instance type that includes very low, low, moderate, high and 10
Gigabit. These promises are not included in the SLA, but they serve as a means of

comparing instance types. This parameter does not apply to the baseline network.

8. Amazon Region - The Amazon cloud consists of nine different regions across the

world, which are isolated from other regions. This research examines whether
network performance within one region differs from other regions. This parameter

does not apply to the baseline network.

9. Amazon Availability Zone - The assumption behind this parameter is that the

physical distance between hosts affects network performance. Within each region,
Amazon separates its networks into availability zones. Amazon does not publish
specific details regarding the underlying network infrastructure, but they do say that
virtual machine instances in different availability zones are in physically separate

locations. This parameter does not apply to the baseline network.

10. Time of Day - The key assumption regarding this parameter is that cloud datacenter
utilization is not evenly distributed throughout the day. This research attempts to
represent that by conducting experiments during certain time frames that correspond

to various utilization levels. This parameter does not apply to the baseline network.

11. Performance of Underlying Amazon Hardware - Amazon’s underlying hardware

provides the computational power in the cloud environment. Amazon does not
publish specific numbers regarding this infrastructure. However, this is a parameter
because its performance has an effect on the overall performance of the cloud

environment. For example, the range of available bandwidth between network

21

nodes within the same availability zone, and between different availability zones
within a region may limit performance for a large distributed topology in the cloud.
This research assumes that Amazon’s underlying hardware can sufficiently support

integrated network experimentation.

12. Performance of Amazon Network Management/Virtualization Sofware - In addition

to the underlying hardware, Amazon’s network management and virtualization
software also plays a role. For example, the amount of virtual machines mapped to a
single physical node may affect network performance for cloud platforms relying on
this software. This research assumes that Amazon’s load balancing and virtualization

scheme can sufficiently support integrated network experimentation.

3.6 Performance Metrics
The following performance metrics are used to evaluate the performance of the SUT

for a given platform.

e Round-Trip Time - Round-trip time (RTT) is the length of time in milliseconds it

takes for a packet to be sent from source to destination, plus the time to receive
an acknowledgement. This metric captures transmission, propagation and queuing
delays present on the network between the source and destination nodes. RTT
considers only packets that are successfully delivered. The measurement is usually
determined using the Packet Internet Groper, or ping utility, which uses ICMP. This

metric provides insight into the quality of successful packet delivery.

e Packet Loss - Packet loss is the percentage of packets that do not successfully arrive
at their destination out of the total number of packets sent. This metric measures the

failure outcomes during transmission.

e Delay - This metric captures the end-to-end one-way delay for packets between

source and destination nodes. This metric is measured in milliseconds, and only

22

considers packets that are successfully delivered, providing insight into the stability

of packet delivery performance.

e Jitter - In this experiment, jitter is defined as the packet delay variation (PDV). RFC
3393 defines PDV as the difference in end-to-end one-way delay between selected
packets in a flow, ignoring lost packets. This metric only considers packets that
are successfully delivered, and provides further insight into the stability of packet

delivery performance.

e Throughput - One of the most common ways of measuring network performance is
by measuring throughput. Throughput is the rate at which messages are successfully
delivered over a communication channel. Therefore, throughput only considers
entire packets that successfully arrive at their destination. In this experiment,

throughput is measured in Megabits per second.

3.7 Factors
Appendix A describes the process used to choose experimental factors from the list
of experimental parameters. Table 3.1 shows the experimental factors used in this research

and their corresponding levels.

3.8 Evaluation Technique

This research uses direct measurement to evaluate the performance each Amazon
cloud platform. Four distinct cloud platforms are constructed along with a baseline
platform. D-ITG software is used to generate experiment traffic, and gather performance
metrics during the experiments. Sender and receiver VMs run D-ITG software. Results
from experimental runs in the cloud are validated against the results from the baseline

platform. The platforms are set up as follows:

23

Table 3.1: Experimental Factors with Corresponding Levels

Factor Low Level Mid Level High Level
1. Instance Type M1.Medium MI.Large
2. Amazon Availability Zone = Same AV Zone Different AV Zone
3. Traffic Protocol ICMP UDP TCP
4. Packet Size Distribution Constant Size Poisson Uniform
(Measured in Bytes) 512 Mean=512 Min=256, Max=4096
S. Packet Arrival Distribution Uniform Poisson Constant Rate

(Measured in Packets/sec) Min=256, Max=4096 Mean=1,000 1,000

e LAN Baseline - The baseline platform consists of two VMs on the same local host.
VMs are hosted on the same physical machine using virtualization software such as
VMWare. Each VM runs the D-ITG software, and sends traffic to the other VM as

shown in Figure 3.3.

/

VMWare

D-ITG Software

Local Host

Receiver

Sender

Figure 3.3: Baseline Platform

24

e Two VM Instances in the same Availability Zone - Figure 3.4 shows a cloud platform

with two VM instances within the same availability zone. Two of the four cloud
platforms use this construct, one with M1.Medium instances and one with M1.Large

instances. These platforms are compared to the LAN baseline platform.

/

AV Zone 1

D-ITG Software

Cloud Network

Receiver

Sender

Figure 3.4: Cloud VMs in Same Availability Zone

e VM Instances in Different Availability Zones - Figure 3.5 shows a cloud platform

with two VM instances located in different availability zones within the same region.
Two of the four cloud platforms use this construct, one with M1.Medium instances
and one with M1.Large instances. These platforms are also compared to the baseline

platform to capture the performance effects of geographical separation.

3.9 Experimental Design

To determine the factors, a Plackett-Burman [23] design is used to evaluate the effects
of each parameter. There are four workload parameters, and 12 system parameters, for a
total of 16 experimental parameters. However, only seven of them can be independently

varied, so there are seven potential experimental factors. Under these conditions, the

25

AV Zone 2

D-ITG Software

AV Zone 1

D-ITG Software

Cloud Network

Sender

Figure 3.5: Cloud VMs in Different Availability Zones

Plackett-Burman design requires 12 experimental runs for the screening process. The
ICMP tests are conducted using the PING utility, requiring a total of 30 experiments. For
the remaining experiments, the five most influential factors are considered. To evaluate the
interaction among all the factors, a full factorial design is used. There are five factors that
each have various levels. A full factorial design requires 2x2x3x3x3= 108 experiments.
Sufficiently small variance is expected with no more than five replications, resulting in a
total of 540 experiments. Therefore, the overall number of experiments including Plackett-
Burman, PING and all remaining experiments is 124+30+540= 582 experiments. Each
test runs for a 10 second time period. The random seed within the workload generation
software is changed before each run to ensure each is independent. Errors are assumed
to be normally distributed, and a 95 percent confidence interval is used because cloud

performance is expected to mimic baseline performance.

3.10 Data Interpretation
As part of the data analysis process, t-tests are run on the data to determine if a

difference of means exists. The null hypothesis for each experiment in this chapter is that

26

the means are equal, and the alternative hypothesis is that they are not equal. Figure 3.6
shows a breakdown of the process to determine which hypothesis to accept. In instances
with values for the t-statistic that have an absolute value greater than 2.0 along with p-values
less than 0.05, there is a significant difference of means. Therefore, the null hypothesis is
rejected, and the alternative hypothesis is accepted. In instances with values for the t-
statistic that have an absolute value smaller than 2.0 along with p-values larger than 0.05,

there is no significant difference of means. Therefore, the null hypothesis is not rejected.

Interpreting test statistics, p-values, and significance

Analysis Test statistic Null Alternative Results p-value significance decision
hypothesis hypothesis
Difference-of- t (two-tailed) m =m, m nem, bigt(> +2.0 small p yes reject H ,
means test - - or<-2.0) (<£0.05) (significant accept H
difference of 3
means)
smallt (<+2.0 big p no don't reject H

Figure 3.6: Statistical Data Analysis (reprinted from [1])

3.11 Methodology Summary

To determine if the cloud can suffice testbed for prototyping virtual networked
environment architectures, network performance in the cloud is considered. This research
measures the performance of four cloud platforms, and compares them to a baseline
platform. Cloud performance is expected to not be statistically less than baseline
performance. The factors that are expected to have the most impact on performance are
the Amazon Availability Zone of VMs, VM instance type, packet size, packet arrival

distribution and traffic protocol.

27

IV. Data Analysis and Results

His chapter discusses the data from experimental runs, analyzing data gathered using
T the PING utility, and workload traffic generated using the Distributed-Internet Traffic
Generator (D-ITG). Data presented in this chapter consists of calculated mean values
of six experimental replications. The D-ITG traffic workload data shows the calculated
mean values after six replications of each of the 18 unique traffic workload configurations.
Individual measurements from each experiment are found in the appendixes. Appendix B
shows the raw measurements across the baseline platform, and Appendix C shows the
raw measurements across each of the four cloud platforms. When evaluating network

performance, several metrics are considered:

1. Bandwidth - Bandwidth is the maximum amount of raw data that can be transmitted
per second across a network link. Due to the nature of virtualization and the unknown
details regarding Amazon’s underlying infrastructure, this study is unable to calculate
the amount of available bandwidth between two virtual machines. Therefore,

bandwidth is not a metric used.

2. Latency - Latency is the minimum time a network needs to send the smallest possible
amount of data. This value captures all processing, queuing, transmission and
propagation delays present on the network. Unlike network delay, this does not
take traffic workload into account. Therefore, latency describes travel time strictly
associated with traversing the network under ideal conditions. This study uses the

PING utility to capture the round-trip time (RTT) as a metric.

3. Packet Loss - Packet Loss is the percentage of packets that are not successfully

delivered from source to destination, out of the total number of packets transmitted.

28

This includes packets that are dropped, lost, or corrupted along the way. This study

uses Packet Loss as a metric for experiments involving traffic workload.

4. Delay - While the PING utility captures the latency involved with sending the
smallest possible amount of data, it does not describe network performance under
heavy traffic workload. Network Delay is a metric used by the study to capture the

processing, queuing, transmission and propagation delays during traffic workload.

5. lJitter - Jitter is the packet delay variation (PDV). RFC 3393 defines PDV as the
difference in end-to-end one-way delay between selected packets in a flow, ignoring

lost packets. This study uses Jitter as a metric to capture PDV during traffic workload.

6. Throughput - Throughput is the actual data that is transmitted per second, excluding
the necessary overhead used to send that data. throughput depends on many other
factors such as the amount of bandwidth, latency, payload size, packet size, number
of intermediate devices between source and destination, an others. This study uses

Throughput as a metric for experiments involving traffic workload.

The rest of the chapter is organized as follows. The discussion begins with an
analysis of the data captured by the PING utility. The PING experiments are used to
get a general idea of underlying network performance, such as identifying whether any
inherent problems appear on the surface of the network before introducing network traffic
with realistic payloads. Next, traffic workload data is analyzed. The traffic workload
experiments go into further detail by introducing various patterns of traffic, representing
the bulk of performance analysis. The chapter concludes with a summary of findings,

revisiting of investigative questions, and recommendations for future research.

4.1 PING Data Analysis
This section presents the results of running the PING utility between two hosts on

the baseline network, as well as two hosts within each of the four cloud computing

29

platforms. PING times correlate very roughly with the amount of distance between source
and destination machines. A machine can PING itself very quickly, but it takes longer
to PING other machines on the network. This time increases as distance increases. For
example, a PING cannot exceed the speed of light. The distance between New York
and Los Angeles is roughly 2,462 miles, which can be traversed by light in roughly 13
milliseconds one-way. A PING utility that travels this distance should not report a round-
trip time (RTT) shorter than 26 milliseconds. Here are a few examples of latency sensitive

systems that have performance thresholds:

1. Satellite Telephony - Geosynchronous telecom satellites are at least 71,000 kilome-

ters from transmitter to receiver, and the resulting latency is roughly 473 milliseconds
[24]. Regardless of available bandwidth, this can be very noticeable, and affect the

quality of the satellite phone service.

2. World Wide Web - When delays are less than 100 milliseconds, Internet users feel

that responses are instant from click to response [25].

3. Online Gaming - Real-time, multi-player games may use the internet or a local area

network (LAN) to create a shared environment between two or more users. The
maximum latency tolerance varies from game to game, but in general, first-person
shooter games require lower latency for the best experience, while a turn-based game

such as spades can tolerate higher latency [26].

The systems listed above are a subset of experiences that are affected by network
latency. In order to accommodate a diverse range of systems that might appear on a
network, latency should be as low as possible. Figure 4.1 shows the average latency values
captured by the PING utility for the baseline platform and all four cloud platforms. PING

statistics are summarized below:

30

1. Baseline Platform - The baseline platform has an average latency of 0.26 millisec-

onds, and 0 percent packet loss.

2. Cloud Platform 1 - Cloud Platform 1 has an average latency of 0.62 milliseconds,

and O percent packet loss.

3. Cloud Platform 2 - Cloud Platform 2 has an average latency of 0.52 milliseconds,

and O percent packet loss.

4. Cloud Platform 3 - Cloud Platform 3 has an average latency of 1.25 milliseconds,

and O percent packet loss.

5. Cloud Platform 4 - Cloud Platform 4 has an average latency of 1.22 milliseconds,

and O percent packet loss.

Figure 4.2 shows an example of interpreting the t-test results, comparing PING data
between the baseline platform and Cloud Platform 1. The t-statistic of -22.6 indicates a
higher absolute value than 2.0, and the p-value is less than 0.001, which indicates that
there is a statistical difference. Therefore, the null hypothesis is rejected in favor of the
alternative hypothesis. The 95 percent confidence interval for the mean on the baseline
platform is 0.2330 through 0.2827. The 95 percent confidence interval for Cloud Platform
1 is 0.5903 through 0.6400. Notice that these confidence intervals do not overlap. The
box plot on the right shows a visual depiction of the data, clearly showing no overlap of
the confidence intervals. This is always the case when we see t-statistics with a larger
absolute value than 2.0, and a p-value less than 0.05. In cases where the absolute value of
the t-statistic is less than 2.0 and the p-value is greater than 0.05, the 95 percent confidence

intervals overlap, and the null hypothesis cannot be rejected.

The high t-statistic values and low p-values in all cases indicate that the difference

in the average latency values are statistically significant. Therefore, the null hypothesis

31

Baseline |Cloud #1|Cloud #2| Cloud #3| Cloud #4
Avg Latency (ms) 0.258 0.62 0.52 1.25 1.22
t-statistic N/A -22.6 -12.7 -10.7 -67.7
p-value N/A 0.000 0.000 0.000 0.000

Baseline Platform vs Cloud Platform 1 PING Stats

Figure 4.1: PING Results

sdev=0.273E-01

degrees of freedom = 10 The probability of this result, assuming the null hypothesis, fis less than .0001

Group A: Number of items= 6
0.222 0.235 0.253 0.260 0.286 0.291

Mean=0.258

95% confidence interval for Mean: 0.2330 thru 0.2827

Standard Deviation = 2.730E-02
Hi=0291Low=0222
Median = 0.257

Average Absolute Deviation from Median =2.117E-02

Group B: Number of items= 6
0.5820.390 0.610 0.618 0.637 0.654

Mean=0.615

95% confidence interval for Mean: 0.5903 thru 0.6400

standard Deviation = 2. /[4UE-U.
Hi=0.654 Low=0.582
Median=0.614

Average Absolute Deviation from Median = 2.117E-02

Figure 4.2: PING Results: Baseline vs Cloud 1

is rejected and the alternative hypothesis is accepted for latency performance. Since the

baseline platform consists of two virtual machines on the same host, its lower level of

32

latency compared to all cloud platforms makes sense. It also makes sense that Cloud
Platforms 1 and 2, which have virtual machines located within the same availability
zone, have lower latency numbers than Cloud Platforms 3 and 4, which have virtual
machines located in different availability zones. These numbers illustrate the affect that
physical distance has on network latency. Although each cloud platform displays higher
network latency than the baseline network, all latency values are well within any reasonable
threshold. Therefore, there are no symptoms on the surface of the cloud network to suggest

performance issues.

4.2 Traffic Workload Data Analysis

Workload tests provide greater insight to network performance by introducing
significant traffic payloads across the network. This section conducts a side-by-side
comparison of performance data between the baseline network and each of the cloud
platforms. For each experimental run, each platform experienced statistically equivalent
traffic workload, allowing for fair performance comparison. Figure 4.3 shows the 18 traffic
workload configurations. Each configuration has a standard traffic pattern to provide a
means for comparison across platforms. For example, Configuration 1 consists of traffic
that has 512 byte packets, flowing at a constant rate of 1,000 packets per second using
the TCP protocol. This is standard across all four cloud platforms and the baseline
platform. Notice that we have only captured three of the five experimental factors at this
point. The other two experimental factors, virtual machine instance type and availability
zone status, are captured within the construct of the cloud platforms themselves. Four
separate cloud platforms exist because we have two remaining factors that each have two
levels, accounting for all possible combinations. This construct completes the full factorial

experimental design.

33

Cloud Platform 1 Cloud Platform 2 Cloud Platform 3 Cloud Platform 4

Config # Packet Size (Bytes) Packet Arrival (Packets/Sec) |Protocol| VM Type |[AV Zone|VM Type |AV Zone| VM Type |AV Zone|VM Type AV Zone
1 Constant: 512 Constant: 1,000 TCP M1.Medium |Same M1.Large |Same M1.Medium |Different|M1.Large | Different
2 Poisson: Mean 512 Uniform: Min=256,Max=4096 |TCP M1.Medium |Same M1.Large |Same M1.Medium |Different|M1.Large | Different
3 Uniform: Min=256,Max=4096 |Poisson: Mean 512 TCP M1.Medium |Same M1.Large |Same M1.Medium |Different|M1.Large | Different
4 Constant: 512 Uniform: Min=256,Max=4096 |TCP M1.Medium |Same M1.Large |Same M1.Medium |Different|M1.Large | Different
5 Poisson: Mean 512 Constant: 1,000 TCP M1.Medium |Same M1.Large |Same M1.Medium |Different|M1.Large | Different
6 Uniform: Min=256,Max=4096 |Uniform: Min=256,Max=4096 |TCP M1.Medium |Same M1.Large |Same M1.Medium |Different|M1.Large | Different
7 Constant: 512 Poisson: Mean 512 TCP M1.Medium |Same M1.Large |Same M1.Medium |Different|M1.Large | Different
8 Poisson: Mean 512 Poisson: Mean 512 TCP M1.Medium |Same M1.Large |Same M1.Medium |Different|M1.Large | Different
9 Uniform: Min=256,Max=4096 |Constant: 1,000 TCP M1.Medium |Same M1.Large |Same M1.Medium |Different|M1.Large | Different
10 |Constant: 512 Constant: 1,000 UDP M1.Medium |Same M1.Large |Same M1.Medium |Different|M1.Large | Different
11 |Poisson: Mean 512 Uniform: Min=256,Max=4096 |UDP M1.Medium |Same M1.Large |Same M1.Medium |Different|M1.Large | Different
12 |Uniform: Min=256,Max=4096 |Poisson: Mean 512 UDP M1.Medium |Same M1.Large |Same M1.Medium |Different|M1.Large | Different
13 |Constant: 512 Uniform: Min=256,Max=4096 |UDP M1.Medium |Same M1.Large |Same M1.Medium |Different|M1.Large | Different
14 |Poisson: Mean 512 Constant: 1,000 UDP M1.Medium |Same M1.Large |Same M1.Medium |Different|M1.Large | Different
15 Uniform: Min=256,Max=4096 |Uniform: Min=256,Max=4096 |UDP M1.Medium |Same M1.Large |Same M1.Medium |Different|M1.Large | Different
16 |Constant: 512 Poisson: Mean 512 uDP M1.Medium |Same M1.Large |Same M1.Medium |Different|M1.Large | Different
17 |Poisson: Mean 512 Poisson: Mean 512 UDP M1.Medium |Same M1.Large |Same M1.Medium |Different|M1.Large | Different
18 Uniform: Min=256,Max=4096 |Constant: 1,000 UDP M1.Medium |Same M1.Large |Same M1.Medium |Different|M1.Large | Different

Figure 4.3: Traffic Workload Configurations

4.2.1 Packet Loss.

Figures 4.4, 4.5, 4.6 and 4.7 show the mean packet loss values for the baseline platform
compared to cloud platforms 1, 2, 3 and 4 respectively. Cloud Platforms 2 and 4 are the
only platforms that show any packet loss. These platforms are different than other cloud
platforms in the sense that they both consist of M1.Large instance types. In both cases,
t-statistic values with absolute values less than 2.0 coupled with p-values greater than 0.05

indicate a lack of statistical significance.

4.2.2 Delay.

Figures 4.8, 4.9, 4.10 and 4.11 show the mean delay values for all platforms under
the 18 unique traffic workload configurations. Traffic workload configuration 14 is the
only instance where baseline platform performance exceeds cloud platform performance.
Results from 95 percent confidence intervals show that Cloud performance exceeds

baseline performance for each of the remaining 17 configurations. In all cases, each cloud

34

Config Baseline Cloud #1 t-test
| Mean Packet Loss (%) | Mean Packet Loss (%) | t-statistic| p-value
1 0 0 N/Al N/A
2 0 0 N/A N/A
3 0 0 N/Al N/A
4 0 0 N/A N/A
5 0 0 N/Al N/A
6 0 0 N/A N/A
7 0 0 N/Al N/A
8 0 0 N/A N/A
9 0 0 N/A N/A
10 0 0 N/Al N/A
11 0 0 N/A N/A
12 0 0 N/A| N/A
13 0 0 N/A N/A
14 0 0 N/A| N/A
15 0 0 N/A N/A
16 0 0 N/A N/A
17 0 0 N/Al N/A
18 0 0 N/A N/A

Figure 4.4: Packet Loss:Baseline vs Cloud Platform 1

platform shows delays less than 90 ms, meeting the acceptability threshold for a wide range

of applications.

4.2.3 Jitter.

Figures 4.12, 4.13, 4.14 and 4.15 show the mean jitter values for all platforms under
the 18 unique traffic workload configurations. This is the only metric where 95 percent
confidence intervals show that the baseline platform’s performance slightly exceeds that of

three of the cloud platforms. However, each cloud platform produced jitter values less than

1 ms, which is acceptable for most applications.

35

Config Baseline Cloud #2 t-test
| Mean Packet Loss (%) | Mean Packet Loss (%) | t-statistic| p-value
1 0 0 N/Al N/A
2 0 0 N/A N/A
3 0 0 N/Al N/A
4 0 0 N/A N/A
5 0 0 N/Al N/A
6 0 0 N/A N/A
7 0 0 N/A| N/A
8 0 0 N/Al N/A
9 0 0 N/A N/A
10 0 0.017 -1.0{ 0.340
11 0 0 N/A N/A
12 0 0.037 -1.4(0.200
13 0 0 N/A N/A
14 0 0.008 -1.5(0.160
15 0 0 N/A N/A
16 0 0 N/A| N/A
17 0 0 N/Al N/A
18 0 0.030 -1.1] 0.310

Figure 4.5: Packet Loss:Baseline vs Cloud Platform 2

4.2.4 Throughput.

Figures 4.16, 4.17, 4.18 and 4.19 show the mean throughput values for all platforms
under the 18 unique traffic workload configurations. In every case, 95 percent confidence
intervals show that cloud platforms produced higher throughput than the baseline platform.
This is likely attributed to robustness of the cloud’s underlying infrastructure, compared
to running two virtual machines on a single personal computer. These values suggest that

throughput performance for each cloud platform exceeds that of the baseline platform.

36

Config Baseline Cloud #3 t-test
| Mean Packet Loss (%) | Mean Packet Loss (%) | t-statistic| p-value
1 0 0 N/Al N/A
2 0 0 N/A N/A
3 0 0 N/Al N/A
4 0 0 N/A N/A
5 0 0 N/Al N/A
6 0 0 N/A N/A
7 0 0 N/Al N/A
8 0 0 N/A N/A
9 0 0 N/A N/A
10 0 0 N/Al N/A
11 0 0 N/A N/A
12 0 0 N/Al N/A
13 0 0 N/A N/A
14 0 0 N/Al N/A
15 0 0 N/A N/A
16 0 0 N/Al N/A
17 0 0 N/A N/A
18 0 0 N/A N/A

Figure 4.6: Packet Loss:Baseline vs Cloud Platform 3

4.3 Summary of Findings
4.3.1 Results Summary.

4.3.1.1 PING Data.

Regarding network latency as measured by the PING utility, 95 percent confidence
intervals indicate that there is a difference between the baseline platform and each of the
cloud platforms. This illustrates the effect of physical distance on network performance.
PINGs travel a smaller distance when virtual machines are located within the same host,
and round-trip time increases as physical distance increases. This is further illustrated

by the higher latency observed in cloud platforms that are in different availability zones.

37

Config Baseline Cloud #4 t-test
| Mean Packet Loss (%) | Mean Packet Loss (%) | t-statistic| p-value
1 0 0 N/Al N/A
2 0 0 N/A N/A
3 0 0 N/Al N/A
4 0 0 N/A N/A
5 0 0 N/Al N/A
6 0 0 N/A N/A
7 0 0 N/Al N/A
8 0 0 N/A N/A
9 0 0 N/A N/A
10 0 0 N/Al N/A
11 0 0 N/A N/A
12 0 0 N/Al N/A
13 0 0.087 -1.01 0.340
14 0 0 N/Al N/A
15 0 0 N/A N/A
16 0 0 N/Al N/A
17 0 0 N/A N/A
18 0 0.007 -1.0] 0.340

Figure 4.7: Packet Loss:Baseline vs Cloud Platform 4

However, latency values for all cloud platforms are small enough to be acceptable to a wide

range of applications.

4.3.1.2 Packet Loss.

For packet loss, 95 percent confidence intervals indicate that there is no difference
between the baseline platform and each of the cloud platforms. Since these confidence
intervals cannot exclude a mean value of zero percent packet loss, they are acceptable for
a wide range of applications. Therefore, network architectures constructed in the cloud

are expected to display packet loss performance similar to that of traditional network

architectures.

38

Config Baseline Cloud #1 t-test
|Mean Delay (ms)|Mean Delay (ms) |t-statistic|p-value
1 81.74 74.77 25.40| 0.000
2 101.03 71.38| 222.00{ 0.000
3 101.02 69.21| 173.00(0.000
q 81.69 67.50 62.32(0.000
5 101.02 65.51| 532.00({ 0.000
6 101.02 64.62| 409.00(0.000
7 81.70 47.53| 206.00{ 0.000
8 81.70 64.04| 149.00(0.000
9 101.02 62.70| 319.00(0.000
10 81.69 62.21| 186.00(0.000
11 101.03 60.93| 221.00(0.000
12 101.03 47.96| 316.00(0.000
13 81.70 59.66| 241.00(0.000
14 4.88 58.92| 520.00(0.000
15 101.03 57.38| 332.00(0.000
16 81.69 57.43| 289.00(0.000
17 81.69 56.76/ 234.00({ 0.000
18 101.03 55.51| 421.00(0.000
Figure 4.8: Delay:Baseline vs Cloud Platform 1
4.3.1.3 Delay.

Results show that 95 percent confidence intervals indicate a difference between the
baseline platform and each of the cloud platforms for all 18 traffic workload configurations.
Configuration number 14 is the only instance where baseline platform performance exceeds
cloud performance. In each of the other 17 configurations, cloud performance exceeds
baseline performance. All delay measurements observed in the cloud were less than 90
milliseconds, which is acceptable for a wide range of applications. Therefore, network
architectures constructed in the cloud are expected to display delay performance similar to

that of traditional network architectures.

39

Config Baseline Cloud #2 t-test
|Mean Delay (ms)|Mean Delay (ms) |t-statistic|p-value
1 81.74 3.74| 597.00{ 0.000
2 101.03 4,72| 1040.00{ 0.000
3 101.02 16.20| 245.00| 0.000
4 81.69 6.47| 716.00f 0.000
5 101.02 7.66| 768.00f 0.000
6 101.02 8.56/ &72.00{ 0.000
7 81.70 78.75 8.36(0.000
8 81.70 19.60| 191.00| 0.000
9 101.02 11.27| 781.00| 0.000
10 81.69 12.26(455.00] 0.000
11 101.03 13.26| 768.00| 0.000
12 101.03 82.81 55.10] 0.000
13 81.70 15.17| 683.00| 0.000
14 4.88 16.10 86.50| 0.000
15 101.03 17.87| 515.00| 0.000
16 81.69 19.04(612.00] 0.000
17 81.69 20.03| 499.00(0.000
18 101.03 21.43| 529.00(0.000

Figure 4.9: Delay:Baseline vs Cloud Platform 2

4.3.1.4 Jitter.

Results for jitter performance are not as conclusive as other metrics. For example,
out of 18 traffic workload configurations, 95 percent confidence intervals show better
performance for Cloud Platform 1 in five instances, better baseline performance in four
instances, and no statistical difference in the other nine. All other cloud platforms show
slightly more instances where baseline performance exceeds cloud performance. In all
cases, cloud platforms show jitter values that are less than one millisecond, which is
acceptable for a wide range of applications. Therefore, network architectures constructed

in the cloud are expected to display jitter performance similar to that of traditional network

architectures.

40

Config Baseline Cloud #3 t-test
|Mean Delay (ms)|Mean Delay (ms) |t-statistic|p-value
1 81.74 9.14| 184.00{ 0.000
2 101.03 15.84| 348.00| 0.000
3 101.02 2094, 224.00(0.000
q 81.69 24.38| 168.00(0.000
5 101.02 27.25| 230.00(0.000
6 101.02 30.28| 203.00(0.000
7 81.70 33,90 146.00(0.000
8 81.70 36.38| 138.00(0.000
9 101.02 38.62| 181.00(0.000
10 81.69 43.08| 115.00(0.000
11 101.03 46.11| 128.00(0.000
12 101.03 48.55| 156.00(0.000
13 81.70 52.01 91.40(0.000
14 4.88 57.53| 155.00(0.000
15 101.03 60.12| 109.00(0.000
16 81.69 63.43 60.30(0.000
17 81.69 66.11 41.10(0.000
18 101.03 72.42 96.20(0.000

Figure 4.10: Delay:Baseline vs Cloud Platform 3

4.3.1.5 Throughput.

Regarding throughput, 95 percent confidence intervals show that all cloud platforms

achieved higher throughput than the baseline platform under the statistically equivalent

workload in all 18 configurations.

resources available in the cloud to power the virtual machines and pass traffic between

them. Therefore, there is no evidence that network architectures constructed in the cloud

would not mimic the performance of networks outside of the cloud.

4.3.2 Scope of Inference.

This is a random experiment, therefore a causal link between baseline platform and

cloud platform performance can be validly inferred. Additionally, the Amazon region is

41

This is likely attributed to the larger amount of

Config Baseline Cloud #4 t-test
|Mean Delay (ms)|Mean Delay (ms) |t-statistic|p-value
1 81.74 34.43| 225.00({ 0.000
2 101.03 27.08| 244.00(0.000
3 101.02 24.40, 230.00(0.000
q 81.69 20.79| 175.00(0.000
5 101.02 17.56| 240.00| 0.000
6 101.02 14.64| 295.00| 0.000
7 81.70 6.46| 205.00(0.000
8 81.70 9.63| 203.00{ 0.000
9 101.02 12.49| 292.00| 0.000
10 81.69 15.90| 176.00| 0.000
11 101.03 19.13| 215.00| 0.000
12 101.03 21.92| 203.00{ 0.000
13 81.70 62.67| 127.00(0.000
14 4.88 28.35 63.00(0.000
15 101.03 31.09| 186.00(0.000
16 81.69 34.65| 120.00(0.000
17 81.69 38.93| 115.00(0.000
18 101.03 42.06| 183.00(0.000

Figure 4.11: Delay:Baseline vs Cloud Platform 4

selected randomly. Therefore, inference can be made to apply these results to other Amazon

regions.

42

Config Baseline Cloud #1 t-test
Mean Jitter (ms) | Mean Jitter (ms) | t-statistic| p-value
1 0.05 0.07 0.36| 0.720
2 0.04 0.17 2.63| 0.025
3 0.08 0.09 0.86| 0.410
q 0.03 0.02 3.35] 0.007
5 0.07 0.07 0.05| 0.960
6 0.07 0.18 2.43(0.036
7 0.04 0.02 3.92] 0.003
8 0.03 0.06 1.73 0.110
9 0.07 0.15 1.97(0.077
10 0.04 0.02 5.54| 0.000
11 0.04 0.03 1.68(0.120
12 0.05 0.22 2.50] 0.032
13 0.04 0.02 4.08| 0.002
14 0.05 0.02 3.86(0.003
15 0.05 0.30 1.73 0.110
16 0.04 0.03 0.73] 0.480
17 0.04 0.03 0.61] 0.560
18 0.05 0.06 2.54(0.029

Figure 4.12: Jitter:Baseline vs Cloud Platform 1

43

Config Baseline Cloud #2 t-test
Mean Jitter (ms) | Mean Jitter (ms) | t-statistic| p-value
1 0.05 0.05 0.04| 0.970
2 0.04 0.07 2.24(0.049
3 0.08 0.07 0.18| 0.860
q 0.03 0.08 4.44] 0.001
5 0.07 0.04 2.44(0.035
6 0.07 0.07 0.19] 0.850
7 0.04 0.06 1.95| 0.080
8 0.03 0.02 3.61] 0.005
9 0.07 0.06 2.20(0.053
10 0.04 0.04 1.04] 0.320
11 0.04 0.06 3.01] 0.013
12 0.05 0.98 5.34(0.000
13 0.04 0.14 1.84(0.096
14 0.05 0.04 0.79(0.450
15 0.05 0.10 5.35| 0.000
16 0.04 0.04 0.13(0.900
17 0.04 0.04 0.21| 0.840
18 0.05 0.71 5.20| 0.000

Figure 4.13: Jitter:Baseline vs Cloud Platform 2

44

Config Baseline Cloud #3 t-test
Mean Jitter (ms) | Mean Jitter (ms) | t-statistic| p-value
1 0.05 0.05 0.07| 0.950
2 0.04 0.11 15.90] 0.000
3 0.08 0.51 5.38| 0.000
q 0.03 0.13 5.82| 0.000
5 0.07 0.02 6.64| 0.000
6 0.07 0.47 4.54| 0.001
7 0.04 0.20 1.69(0.120
8 0.03 0.04 0.19] 0.850
9 0.07 0.21 6.39] 0.000
10 0.04 0.02 9.23| 0.000
11 0.04 0.08 0.59] 0.570
12 0.05 0.84 21.20] 0.000
13 0.04 0.02 8.01| 0.000
14 0.05 0.02 5.90| 0.000
15 0.05 0.88 19.10] 0.000
16 0.04 0.16 1.50(0.160
17 0.04 0.14 1.31(0.220
18 0.05 0.57 10.20] 0.000

Figure 4.14: Jitter:Baseline vs Cloud Platform 3

45

Config Baseline Cloud #4 t-test
Mean Jitter (ms) | Mean Jitter (ms) | t-statistic| p-value
1 0.05 0.02 5.17| 0.000
2 0.04 0.17 7.92| 0.000
3 0.08 0.03 7.00] 0.000
q 0.03 0.14 14.70] 0.000
5 0.07 0.04 1.06(0.310
6 0.07 0.16 10.20] 0.000
7 0.04 0.08 0.77| 0.460
8 0.03 0.02 2.62(0.026
9 0.07 0.08 0.39] 0.700
10 0.04 0.03 1.47(0.170
11 0.04 0.02 13.70] 0.000
12 0.05 0.53 5.42| 0.000
13 0.04 0.05 0.51] 0.620
14 0.05 0.02 5.92| 0.000
15 0.05 0.55 9.46| 0.000
16 0.04 0.06 0.67| 0.520
17 0.04 0.02 2.52(0.031
18 0.05 0.43 9.54| 0.000

46

Figure 4.15: Jitter:Baseline vs Cloud Platform 4

Config Baseline Cloud #1 t-test
Mean Throughput (Mb/s) | Mean Throughput (Mb/s) | t-statistic| p-value
1 2.00 3.83 20.80| 0.000
2 1.54 1.92 71.10f 0.000
3 6.50 8.61 54.40(0.000
q 1.55 1.91 47.10(0.000
5 2.09 3.83] 315.00| 0.000
6 6.56 8.15 27.20| 0.000
7 1.51 2.02] 256.00| 0.000
8 1.51 2.02] 274.00| 0.000
9 8.89 16.23| 167.00| 0.000
10 2.09 3.83] 812.00| 0.000
11 1.55 1.91 52.60(0.000
12 6.40 8.58 96.60| 0.000
13 1.55 1.92 92.60(0.000
14 2.13 3.84 9.20(0.000
15 6.61 8.13 25.50| 0.000
16 1.51 2.02] 265.00| 0.000
17 1.51 2.02] 355.00| 0.000
18 8.91 16.24| 123.00| 0.000

Figure 4.16: Throughput:Baseline vs Cloud Platform 1

47

Config Baseline Cloud #2 t-test
Mean Throughput (Mb/s) | Mean Throughput (Mb/s) | t-statistic| p-value
1 2.00 3.78 19.80| 0.000
2 1.54 1.89 46.70(0.000
3 6.50 8.58 48.80(0.000
q 1.55 1.89 37.50f 0.000
5 2.09 3.75| 105.00| 0.000
6 6.56 7.94 20.90| 0.000
7 1.51 1.99| 129.00(0.000
8 1.51 2.02] 265.00| 0.000
9 8.89 15.92 38.60(0.000
10 2.09 3.77(128.00| 0.000
11 1.55 1.89 36.50f 0.000
12 6.40 8.55 76.80| 0.000
13 1.55 1.90 44.40(0.000
14 2.13 3.77 8.80(0.000
15 6.61 8.06 26.40| 0.000
16 1.51 2.01 107.00| 0.000
17 1.51 2.00 92.90(0.000
18 8.91 15.93 83.80f 0.000

Figure 4.17: Throughput:Baseline vs Cloud Platform 2

48

Config Baseline Cloud #3 t-test
Mean Throughput (Mb/s) | Mean Throughput (Mb/s) | t-statistic| p-value
1 2.00 3.81 20.60| 0.000
2 1.54 1.91 53.20f 0.000
3 6.50 7.91 14.70| 0.000
q 1.55 1.91 51.30{ 0.000
5 2.09 3.85 75.30(0.000
6 6.56 7.70 15.00{ 0.000
7 1.51 2.02] 214.00| 0.000
8 1.51 2.03] 275.00| 0.000
9 8.89 15.00 30.00{ 0.000
10 2.09 3.86 90.00f 0.000
11 1.55 1.91 46.30(0.000
12 6.40 8.60 86.80| 0.000
13 1.55 1.91 56.30{ 0.000
14 2.13 3.89 9.35| 0.000
15 6.61 8.09 37.60{ 0.000
16 1.51 2.02] 220.00| 0.000
17 1.51 2.02] 459.00| 0.000
18 8.91 16.30| 151.00| 0.000

Figure 4.18: Throughput:Baseline vs Cloud Platform 3

49

Config Baseline Cloud #4 t-test
Mean Throughput (Mb/s) | Mean Throughput (Mb/s) | t-statistic| p-value
1 2.00 3.82 20.40| 0.000
2 1.54 1.89 49.60(0.000
3 6.50 8.44 45.10(0.000
q 1.55 1.90 61.40{ 0.000
5 2.09 3.84| 131.00| 0.000
6 6.56 8.04 23.40| 0.000
7 1.51 2.00 91.80(0.000
8 1.51 2.00 60.50(0.000
9 8.89 15.82 70.90(0.000
10 2.09 3.86] 127.00| 0.000
11 1.55 1.88 72.00{ 0.000
12 6.40 8.44 30.40{ 0.000
13 1.55 1.89 70.10{ 0.000
14 2.13 3.80 8.93| 0.000
15 6.61 8.08 28.50| 0.000
16 1.51 2.00 88.90(0.000
17 1.51 2.00 85.20(0.000
18 8.91 16.01 58.40(0.000

Figure 4.19: Throughput:Baseline vs Cloud Platform 4

50

V. Distributed Network Application in the Cloud Case Study

His chapter describes the involvement of this research in a case study to build
T a distributed network application in the cloud. The discussion begins with a
background introduction to the case study, before introducing ZeroMQ, the tool used to
accomplish the task. It then describes the particular messaging framework within ZeroMQ
used to modify the distributed network application to operate in a cloud environment before

presenting results.

5.1 Introduction to the Case Study

Involvement in the Distributed Network Application in the Cloud case study is part
of a larger data analysis effort. Boeing, in conjunction with Morgan State University, is
currently in the process of conducting a data analysis experiment on flight simulation data.
They aim to receive a capture of real-time flight simulation data that includes time-stamped
position updates for each individual node as well as each node’s perception about the
location of every other node. This allows an analysis of the difference between truth data,
which is the location that each node reports as its true location, and each node’s calculated
world picture after piecing together updates from all other nodes. Due to network latency,
dropped update packets and other factors common to distributed applications, differences
are likely to be present.

One of the issues faced by the data analysis effort is generating and receiving the
flight data to be analyzed. In lieu of using more expensive solutions, such as having real
air planes or building a flight simulation test range to generate position data to transfer to
their networks, the data analysis team chose to leverage the public cloud as a testbed for

generating and transferring the data. This research contributes to the case study by building

51

the distributed application framework in the cloud, and extracting the data from the cloud

to the Boeing and Morgan State networks for analysis.

5.2 ZeroMQ

The Open Extensible Architecture for the Analysis and Generation of Linked
Simulations (OpenEaagles) is a simulation framework developed and maintained by the
U.S. Air Force to support a multitude of simulation activities [27]. OpenEaagles has been
used by the U.S. Air Force to transfer real-time flight simulation data on a number of
projects. Currently, OpenEaagles uses UDP broacast packets to distribute information
between network nodes. Due to Amazon’s restriction on broadcast traffic, the application
demands modification in order to operate in the cloud. An alternative option is needed that
accomplishes the task of sending position updates to all nodes without sending broadcast
packets. The framework known as ZeroMQ meets this need. ZeroMQ uses sockets to
create a messaging framework that can transport any type of data between other ZeroMQ
nodes [28]. ZeroMQ is an open source framework that supports multiple operating system
platforms and multiple programming languages. Additionally, it features sockets that
support unicast and multicast transports. These sockets express certain message patterns
that are not necessarily one-to-one [29]. These message patterns are what allows ZeroMQ
to send unicast packets and have them distributed in a broadcast or multicast fashion, thus

eliminating the need to actually send broadcast or multicast packets.

5.3 Publish-Subscribe Messaging Framework

ZeroMQ has several messaging patterns available depending on user needs. The
Publish-Subscribe pattern aims to create highly scalable group messaging by enabling
users to send large volumes of data rapidly to many recipients. One of the ways that
ZeroMQ achieves that scalability is by not having recipients talk back to senders. In other

words, subscribers do not connect to the publisher at all, but rather a multicast group on

52

a network switch, to which the publisher sends its messages. Publish-Subscribe is like a
radio broadcast; the subscriber misses everything that happens prior to subscribing, and the
amount of information received depends on the quality of reception [28]. While removing
back-chatter simplifies message flow, it also removes the ability to coordinate between

senders and receivers. This dynamic creates the following challenges [29]:

1. Publishers cannot detect whether subscribers are successfully connected, both on

initial connections and re-connections after network failures.

2. Subscribers cannot coordinate with publishers regarding the message sending rate,

causing subscribers to either keep up or lose messages.

3. Publishers cannot detect when subscribers have disappeared due to complications

such as processes crashing, network outages, etc.

4. If subscribers join late or drop off, they miss messages sent by the publisher while

not online.

5. If subscribers fetch messages too slowly, queues can build up and overflow.

6. If subscribers crash and restart, they lose the data that was already received.

The challenges listed above make this pattern unusable for applications that demand
reliable multicast. However, some real-time distributed applications can tolerate almost
reliable multicast due to their nature. For example, if a real-time position update is lost by
the network, then re-transmitted, the position information is likely too outdated to be useful
to the receiver once it finally arrives. It is better for the receiver in that case to wait for the
next position update, which will follow shortly afterwards, due to the real-time nature of

the updates.

53

5.4 Proof of Concept

Rather than immediately modifying the OpenEaagles source code to use ZeroMQ as
a method of transport, a proof of concept experiment answers the functionality question
with minimal programming requirements. The proof of concept consists of the following

elements:

1. Virtual Machine Instances in the Cloud - Three virtual machine instances in the

Amazon cloud serves as a publisher, subscriber, and proxy for the experiment.

2. Host on Boeing Network - This experiment uses a machine on the Boeing network

as the host that receives data from the cloud.

3. Execution Programs - In lieu of writing a program that simulates actual flight

position data, the experiment uses a simple weather update server construct using
C++ programs. The publisher program generates random weather data that includes
temperatures for various zipcodes in a continuous loop. The subscriber program
chooses a zipcode and the number of weather updates to process for that zipcode.
After receiving the required amount of weather updates from the publisher, the
subscriber calculates the average temperature for that zipcode and displays the result
to the user. Since the publisher and subscriber are not directly connected, a proxy
program is needed. The proxy program subscribes to everything from the publisher
on one socket, and publishes the same data on another socket. This allows subscribers
to to the proxy for information. The benefit to this construct is that a single proxy
can perform this function for multiple publishers and subscribers, without any of the
subscribers needing to have knowledge of any of the publishers. Only the proxy’s

publish and subscribe socket addresses need to be known.

54

5.4.1 Publisher Program.

Figure 5.1 shows the applicable portion of the weather update publisher program. The
publisher begins by preparing the context. The public IP address of the proxy machine
in the Amazon cloud is 54.226.39.182. The publisher reaches out to this machine and
establishes a connection to the proxy on port 5556. Although the publisher is establishing
the connection, this socket is used to allow the proxy to subscribe to the publisher. This
is made possible because under the ZeroMQ infrastructure, the direction in which a
connection is established is not connected to the direction of traffic flow. For example,
in typical web server communication, the web client establishes a connection to the server
before traffic begins to flow. Web servers do not initiate connections to clients in order
to send them data. ZeroMQ removes this restriction, allowing the server to connect to the
proxy, while clients also connect to the same proxy. The proxy relays traffic back and forth.
Therefore, as long as all entities can connect to the proxy, which has a public IP address,
traffic can flow from any publisher to any subscriber.

After establishing the connection to the proxy, the publisher needs to actually publish
data for subscribers. The publisher does this by binding weather.ipc in the next line of
code. The publisher then uses a random number generator to generate zipcode, temperature
and relative humidity data, and prepares messages to send to subscribers. This construct
simulates a broadcast or multicast messaging environment because although all data gets
published, subscribers choose the data to which to subscribe, which can be all or a subset

of the data.

5.4.2 Subscriber Program.

Figure 5.2 shows the applicable portion of the weather update subscriber program.
The program first connects to the same proxy address of 54.226.39.182, but on port 5559
rather than port 5556. This establishes a subscription to data relayed from the publisher

via the proxy. The program defaults to collecting data for New York City zipcode 10001.

55

{/{ Prepare our context and publisher
zmdg: :context t context (1) ;
zmg: :socket_t publisher (context, ZMQ PUE) ;

publisher.connect("tep://54.226.35.182:5556") ;

publisher.bind("ipc://weather.ipc™) ;

// Initialize random number generator
srandom {{unsigned) time (NULL)) ;
while (1) {

int zipcode, temperature, relhumidity;

// ©Get walues that will fool the boss
ripcode = within (100000)
temperature = within (215) -
relhumidity = within (50) + 1

/{ BSend message to all subscribers
zmg: :message t message(20) ;
snprintf {({char *) message.data(), 20 ,
"%054 %d %d", zipcode, temperature, relhumidity) ;

pukblisher.=send (message) ;

Figure 5.1: Weather Update Publisher

Rather than processing temperature and relative humidity updates for zipcode 10001, the
program only performs calculations on the temperature updates. After receiving 10 updates
for zipcode 10001, the program calculates the average temperature and reports it to the user

on the screen.

5.4.3 Proxy Program.
Figure 5.3 shows the applicable portion of the weather update proxy program. The
program begins with the socket connection to the publisher. ZeroMQ uses a connect and

bind construct. Since the publisher connects to the proxy, the proxy then binds to port

56

/Y Bocket to talk to server

m
R
]
m
P
@
H

std::cout <<€ "Collecting updates from weath
zmg: :socket t subscriber (context ZMQ SUE) ;

r
- hn qoe.cccouay .
35.182 "y ;

subscriber.connect ("tcop://54.226.

/f Subscribe to =zipcode, default is NYC, 10001
const char *filter = {argc > 1)? argwv [1]: "10001 :
subscriber.setsockopt (EMQ SUBSCRIBE, filter, strlen (filter));

/f Process 10 updates
int update nbr;

long total temp =
for (update nbr =

J; update _nbr < 10; update nbr++) {
zmg: :message_t update;

int zipcode, temperature, relhumidity;
subscriber.recv (&update) ;

std::istringstream iss(static cast<char*>(update.data(}});

i=z=s »>» zipcode >»> temperature >»» relhumidity ;

total temp += temperature;

1

std: rcout << "Lverage temperature for zipcode '"<< filter

Swn" << std:

:endl ;

<<"' was "<<(int) (total temp / update nbr) <<"Farenheit"

<< =td::endl;

Figure 5.2: Weather Update Subscriber

5556 on its local machine. This connection establishes a subscription to the data sent

by the publisher. The proxy follows the same procedure to for the subscriber, binding to

port 5559 in order to publish data received from the publisher out to subscribers. The

proxy subscribes to everything from the publisher, and subscribers can choose to filter out

unwanted data. The proxy then executes the process of receiving messages on the front

end, and relaying those messages out of the back end.

57

/f This is where the weather server sits
zmg: :socket_t frontend(context, ZM{ SUE) ;

frontend.bind ("tcp: //*:5556") ;

ff This is our public endpoint for subscribers
zmg: :socket t backend (context, ZMQ PUB) ;
backend.bind("tcp://*:5555") ;

f{ Bubscribe on everything
frontend.set=sockopt (ZMQ SUBSCRIBE, "", 0);

ff SBhunt mes=zages out to our own subscribers
while (1) {
while (1) {
zmg: :message_t message;
int&4 t more;

size t more size = sizeof (more);

/{ Process all parts of the message
frontend. recv (&mess=sage) ;

frontend.getsockopt (ZMZ RCVMORE, &more, &more size) ;
backend. send (message, more? ZMQ SNDMOEE: 0) ;

if (!'more)

break; /{ Last message part

Figure 5.3: Weather Update Proxy

5.5 Case Study Results

After running the three programs on the machines in the cloud, the subscriber was able
to receive data from the publisher via the proxy machine. Creating two similar publisher
and corresponding subscriber programs expanded the architecture to three publishers and
three subscribers that all connect to one proxy machine. All subscribes were still able to
receive updates from publishers. Additionally, the Boeing host machine was able to run the
subscriber program and receive updates from the cloud. This proof of concept experiment

shows that real-time distributed applications can be modified if necessary to operate within

58

the restrictions of the cloud environment. Incorporating ZeroMQ’s Publisher-Subscriber
messaging framework into the the OpenEaagles platform serves Boeing and Morgan State

University’s data analysis needs.

59

VI. Conclusion

6.1 Investigative Questions

1. Question What techniques do researchers use to conduct network experimentation?

Answer Researchers use simulation, emulation and integrated network experimenta-

tion techniques to conduct network experimentation.

2. Question What tools are used to implement these techniques?

Answer Simulation tools such as OMNet++, NetSim, GNS3, NS-3 and OPNET
are popular choices to run simulations. Tools such as Emulab, Planetlab and VINI
are popular emulation platform choices. The public cloud can also be leveraged to

combine simulation and emulation techniques.

3. Question What effect on cloud testbed performance does physical distance between

virtual machine (VM) instances have?

Answer Physical distance between virtual machines increases network latency. The
baseline platform has the lowest amount of latency because both virtual machines
reside on the same host. Cloud Configurations 1 and 2 have slightly higher latency
because they consists of virtual machines that are in the same availability zone,
but not necessarily on the same host. Cloud Configurations 3 and 4 have the
highest latency values because they consist of virtual machines that reside in different
availability zones. Ultimately, all cloud platforms exhibit latency values that are well

within production network expectations.

4. Question What is the difference in round-trip time, packet loss, delay, jitter and
throughput among various Amazon cloud platforms, compared to the baseline

platform?

60

Answer Round-trip time for all cloud platforms are higher than the baseline network,
although they are well within production network expectations. Packet loss and delay
values are all comparable to baseline platform performance. Jitter values for cloud
platforms are either comparable to or slightly below baseline performance values,
but all well within production network expectations. Throughput values for all cloud

platforms exceed baseline performance.

5. Question Can the public cloud serve as a testbed to perform integrated network

experimentation?

Answer Yes. Cloud testbed performance metrics show that network performance
in a cloud environment mimics the performance of networks constructed outside
of the cloud. Therefore, the cloud is a suitable for conducting integrated network

experimentation.

6.2 Future Research

The next step toward building a DoD testbed in the cloud is to incorporate Wide Area
Network (WAN) emulation techniques to simulate various types of network links such as
the low bandwidth, high latency satellite links found on Department of Defense (DoD)
tactical networks. Currently, the cloud allows users to create virtual machine instances in
the cloud, but the link capacities between those machines equate to whatever the cloud
infrastructure can deliver. There is no native capability in the cloud to emulate links that
make performance worse than what the cloud is capable of delivering. Implementing this
capability will allow users to create topologies that mimic the exact topology of production

networks, adding more realism to experiments.

6.3 Final Thoughts
Experimental metrics and statistical analysis show that cloud performance mimics

expected performance of any network. Additionally, ZeroMQ provides a framework

61

to overcome cloud policy restrictions, and allow distributed applications to send group
messages without using broadcast or multicast packets. Leveraging the resources of the
public cloud provides the necessary realism without the need to purchase or maintain a
separate network or emulation testbed. Therefore, the public cloud infrastructure can serve

as testbed for performing integrated network experimentation.

62

Appendix A:

Pilot Experiments

His appendix describes the process of using a Plackett-Burman design to narrow
T down the 16 parameters in the study to a list of five experimental factors. The
discussion begins with an introduction to parameters and experimental factors, followed by
a description of the theory behind the Plackett-Burman design. After listing the required
materials and equipment, the discussion proceeds with an outline of the procedures and
process for completing the necessary experiments. Finally, the discussion concludes with

a list of the resulting experimental factors.

A.1 Introduction

System parameters affect the performance of the System Under Test(SUT). Section
3.4 describes four workload parameters, and Section 3.6 describes 12 system parameters
for a total of 16 experimental parameters. The parameters with the greatest effect on
performance are chosen to be experimental factors. Each factor is assigned factor levels.
For example, the levels for the traffic protocol factor are TCP, UDP and ICMP. As these
factor levels change, they may produce measurable effects on performance metrics such as
throughput and packet loss. This research uses a complete factorial design in order to test
every possible combination at all factor levels. This research also assumes that a sufficiently
small variance is observed with five repetitions of each experiment. If all 16 parameters in
this study were chosen as experimental factors, even with only two levels per factor, and five
repetitions, the study would require 2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x5=327,680
experiments. This is clearly an unreasonable amount of experiments. In order to limit

the number of experiments required, parameters must be narrowed down to a reasonable

63

number of experimental factors. This study uses the Plackett-Burman design to assist with

making those choices.

A.2 Theory

Plackett-Burman designs are experimental designs presented in 1946 by Robin L.
Plackett and J. P. Burman for investigating the dependence of some measured quantity on
a number of experimental factors [23]. Although complete factorial designs accomplish
this task, the number of required experiments in a complete factorial design increases
exponentially as the number of factors increase. Therefore, the idea was to find smaller
designs that identify the main effects of each factor using a limited number of experiments.
This study begins by considering each parameter that can be independently changed by the
user as a potential factor, totaling seven potential factors. The study then uses a Plackett-
Burman design where each potential factor has two levels, a +1 level and a -1 level. For
example, traffic protocol has TCP as the +1 level, and UDP as the -1 level during the
Plackett-Burman tests. The Plackett-Burman design for the case of two levels per factor
uses the method found in 1933 by Raymond Paley for generating orthogonal matrices
whose elements are either 1 or -1. These matrices of size N, where N is a multiple of four
but not a power of two, shows the pattern in which to vary the factor levels in the experiment
[30]. In this case, the experiment has seven parameters that can be independently varied,
requiring a matrix of size 12. The matrix is of size 12 because 12 is the smallest multiple of
four that is greater than seven, but not also a power of two. The number eight is a multiple
of four, but since it is a power of two, it is ineligible under the Plackett-Burman design. The
Plackett-Burman design assumes that interactions between the factors are negligible. When
interactions between factors are not negligible, they are confounded with the main effects,
preventing one from distinguishing between certain interactions and certain main effects
[31]. Since this study uses the Plackett-Burman design as a screening mechanism only,

confounding is not considered to be a problem. The Plackett-Burman design identifies the

64

most influential factors in any way, allowing for further investigation of identified factors

during the complete factorial design.

A.3 Materials and Equipment
In order to conduct the Plackett-Burman screening experiments, the following

materials and equipment are needed:

1. Amazon Cloud VM Instances - Instances must be configured in the cloud according

to the factor levels specified by the Plackett-Burman design. For example, the
Instance Type factor has a +1 level of M1.Large and a -1 level of T1.Micro. Other
parameters are set during the creation of instances to include the Amazon Region
and Availability Zone. Each of the VMs run Ubuntu Server 13.04 with a 64 bit 3
GHz processor. This experiment uses the T1.Micro and M1.Large instances. The
T1.Micro instances have 0.615 GB of memory, Amazon Elastic Block Store (EBS)
only external storage, one virtual CPU and a very low resource reservation on the
Amazon cloud network. The M1.Large instances have 15 GB of memory, 420 GB
of native storage, four virtual CPUs and a high resource reservation on the Amazon
cloud network. The reasoning behind the drastic differences in these two factor levels
is to clearly see if the instance type has an effect on performance. Other factor levels

are constructed in a similar fashion.

2. Distributed Internet Traffic Generator (D-ITG) Software - Section 2.3.2 describes D-

ITG software. D-ITG software must be installed on each VM instance to generate

and receive traffic workload for the experiments.

3. List of Parameters - Section 3.4 provides a list of workload parameters, and Section

3.6 provides a list of experimental parameters along with their descriptions. The
goal of the Plackett-Burman design is to narrow this list to the most influential

experimental factors, which will assume various factor levels during the complete

65

factorial experiments. Parameters that are not directly alterable by the user are not
considered as candidates to become experimental factors. Therefore, this studying

considers the following candidates:

(a) Availability Zone - When creating an instance in the Amazon Cloud, users are

given the option to choose an Availability Zone for that instance.

(b) Packet Size Distribution - The D-ITG software allows users to set the packet

size distribution.

(c) Packet Arrival Distribution - The D-ITG software allows users to set the packet

arrival distribution.

(d) Traffic Protocol - The D-ITG software allows users to set the traffic protocol.

(e) Amazon Region - When creating an instance in the Amazon Cloud, users are

given the option to choose an Amazon Regional location for that instance.

(f) Time of Day - This is the time of day that the experiment is conducted in Eastern

Standard Time.

(g) Instance Type - When creating an instance in the Amazon Cloud, users are

given the option to choose an instance type.

4. Data Input Spreadsheet Software - Software such as Microsoft Excel is used to

capture the results in spreadsheet form and perform mathematical operations such

as calculating averages.

A.4 Procedures and Process

After specifying a matrix of size 12 and seven candidates for the Plackett-Burman
design, the R statistical program generates the matrix shown in Figure A.1. This matrix
is used to create a spreadsheet that assigns each of the seven candidates to a letter from

A to G, before filling in their factor levels as shown in Figure A.2. In order to setup each

66

experiment, each of the 12 configuration numbers represents the 12 experiments required
under the Plackett-Burman design. For example, the first experimental run consists of
T1. Micro VMs that are located in the Tokyo region, but in different Availability Zones,
with traffic that has a packet size of 4096 at a constant rate of 1,000 packets per second,
TCP protocol, and the experiment needs to be run between 11am and 2pm Eastern time.
Following this process of setting up each configuration is all that is necessary to distinguish
the effects of each candidate on performance metrics. Each experiment runs for 10 seconds.
After designating one VM as the D-ITG sender and the other the D-ITG receiver and
and configuring the traffic parameters, the results of each experimental run will be saved
to the log files specified. Figure B.3 shows an example of the commands used in D-
ITG. For example, the sender command specifies a destination IP address of 10.0.0.2,
and tells the local sender machine to create a log file named sender.log to capture the
results. Additionally, it tells the remote receiver to create a log file named receiver.log
to capture the results received on the far end. The results captured in these two files should
be nearly identical. The command also specifies a round-trip time meter versus one way,
a duration of 10,000 milliseconds, which is equal to 10 seconds, TCP protocol, constant
packet size of 4096 and a constant packet distribution of 1,000 packets per second. Using
these commands in combination with the choices made while creating the VMs in the
Amazon cloud allows for the construction of each of the 12 unique configurations for the

Placket-Burman design.

A.5 Results

Figure A.4 shows the values of the metrics that were captured after each of the 12
configuration runs. The metrics are Throughput, Packet Loss, Delay and Jitter. After
capturing these values, the next step is to return to the factor matrix. Figure A.5 shows

the candidates and their factor levels of +1 and -1 depending on the configuration. The

67

pb(12, 7, randomize = FALSE)
Plackett-Burman Design for 7 factors
A B C D E F G

1 i1 1-1 1 1 1-1
2 -1 1 1-1 1 1 1
3 1-1 1 1-1 1 1
4 -1 1-1 1 1-1 1
5 -1 -1 1-1 1 1-1
6 -1 -1-1 1-1 1 1
7 1-1-1-1 1-1 1
8 1 1-1-1-1 1-1
9 1 1 1-1-1-1 1

10 -1 1 1 1 -1 -1 -1
11 1 -1 1 1 1 -1 -1
12 -1 -1 -1 -1 -1 -1 -1
class=design, type= pb

Figure A.1: Plackett-Burman Matrix for 7 Factors

candidate labeled 7 is the mean value, which is why it has all +1 values in the matrix.
To calculate the sum of the throughput attributed to candidate A, multiply the factor
level (configuration one’s factor level for candidate A is +1) by the measured Throughput
(configuration one’s Throughput is 20.321874307). Perform this calculation for each of the
configurations down candidate A’s column, then sum the values to get a sum Throughput of
-257.379727. Dividing this value by 12, the number of experimental runs, gives the effect
of -21.4483106. For the Plackett-Burman design, the sign of the number is meaningless.
Only the magnitude is considered for the effect, and larger magnitudes equal greater effects.
Repeating this process for each of the remaining candidates yields the results shown in
Figure A.5. The color code in Figure A.5 highlights the candidate with the largest effect
for a particular metric in green. The second largest effect per metric is blue, followed by
brown and peach. Since candidate C, Packet Arrival Distribution had the largest effect on
both Throughput and Delay, it was the first candidate chosen as an experimental factor. The

remaining factors were chosen because their effects exceeded the ones not chosen.

68

Candidates
Configuration | Availability Zone (sender/reciever) | Packet Size Distribution (Bytes) | Packet Arrival Distribution (Packets/Sec)
Number A B C
1 Different Constant: 4096 Constant: 1,000
2 Same Constant: 4096 Constant: 65535
3 Different Constant: 512 Constant: 65535
4 Same Constant: 4096 Constant: 1,000
5 Same Constant: 512 Constant: 65535
6 Same Constant: 512 Constant: 1,000
7 Different Constant: 512 Constant: 1,000
8 Different Constant: 4096 Constant: 1,000
9 Different Constant: 4096 Constant: 65535
10 Same Constant: 409 Constant: 65535
11 Different Constant: 512 Constant: 65535
12 Same Constant: 512 Constant: 1,000
Candidates
Configuration | Traffic Protocol Amazon Region Time of Day (Eastern Time)| Instance Type
Number D E F G

1 TCP Tokyo 11am-2pm T1.Micro

2 upp Tokyo 1lam-2pm M1lLlarge

3 TCP Virginia 1l1lam-2pm M1lLarge

4 TCP Tokyo Gam-9am M1Llarge

5 upp Tokyo 1lam-2pm T1.Micro

6 TCP Virginia llam-2pm M1lLarge

7 UDP Tokyo Gam-9am M1Large

8 upp Virginia 1lam-2pm T1.Micro

9 uDpP Virginia bam-9am M1lLarge

10 TCP Virginia Bam-9am T1.Micro

11 TCP Tokyo Gam-9am T1.Micro

12 UDP Virginia Bam-9am T1.Micro

Figure A.2: Candidates and Factor Levels

D-ITG Beceliver command:
./ITGRecv

D-ITG Sender Command:
./ITGSend -a 10.0.0.2 -1 sender.log —x receiver.log —m rttm -t 10000 -T TCP -c 4056 -C 1000

Figure A.3: D-ITG Commands

69

Performance Metrics:
Measured Values

Config #| Throughput (Mb/s)| Packet Loss (% of packets)| Delay (ms)| Jitter (ms)
1 20.32 0 40.937 0.711
767.24 2.13 32.762 0.033

3 134.53 0 0.889 0.012
4 30.68 0 68.467 0.013
5 72.66 0.02 31.469 0.035
6 3.83 0 20.851 0.011
7 3.81 0 100.309 0.012
8 29.77 0.82 21.003 0.751
9 563.81 2.02 20.093 0.055
10 14459 0 45.048 0.264
11 13.18 0 4.256 4.256
12 3.80 0 30.952 0.101

Figure A.4: Measured Values

A.6 Conclusion
After using the Plackett-Burman design to screen out candidates, here are the

experimental factors:

1. Packet Arrival Distribution

2. Traffic Protocol

3. Availability Zone

4. Packet Size Distribution

5. VM Instance Type

70

Results

Configuration Number 1 A B c D E F G

1 1 1 1 = 1 1 1 e |

2 1 2 } 1 1 2 1 1 1

3 1 1 =T} 1 1 -1 1 1

4 1 =+ 1 =1 1 1 s] 1

5 1 ik i | 1 -1 1 1 ik

6 i | -1 -1 -1 1 -1 i 1

7 i | 1 -1 -1 2k 1 -1 1

8 1 1 1 I = -1 1 =1

9 1 1 1 1 -1 -1 -1 1

10 1 -1 1 1 1 -1 -1 -1

11 1 1 -1 1 1 1 -1 -1

19 1 -1 -1 -1 -1 -1 -1 -1
Sum Throughput 1788.23607 |-257.379727 |1324.58988 |[1603.79054 |-1093.8477 |27.5556414 |235.258821 |1219.57376
Sum Throughput/12 149.019673 |-21.4483106 |110.38249 2.25630345 |19.6045018 |101.631146
Sum Packet Loss 499 0.65 4.55 -0.65 0.55 3.31
Sum Packet Loss/12 0.41583333 |0.0575 0.4125 0.27916667 -0.0575 0.07916667 |0.27583333
Sum Delay 0.417036 -0.042062 0.039584 -0.148002 ; 0.139364 -0.121214 [0.063706
Sum Delay/12 0.034753 -0.00350517 |0.00329867 -0.0046783 |0.01161367 |-0.01010117 |0.00580883
Sum litter 0.006254 0.00534 -0.0026 0.003036 0.00428 0.003866 -0.003148 |-0.005582
Sum Jitter/12 0.00052117 |0.000445 -0.00021667 |0.00025467 [0.00035667 |0.00032217 |-0.00026233
Factor 1 _ C Packet Arrival Distribution
Factor 2 D Protocol
Factor 3 A Availability Zone
Factor 4 B Packet Size Distribution
Factor 5 G Instance Type

Figure A.5: Results

71

Appendix B:

Baseline Experiments

His appendix describes the process of conducting performance testing on the baseline
T platform. These experiments define the standard to which the cloud performance is
compared. The discussion begins with an explanation behind the selection of the baseline
platform, followed by the materials and equipment needed to conduct the experiments.
After describing the procedures and process of conducting the experiments, results are

presented along with a concluding statement regarding the results.

B.1 Introduction and Theory

Amazon Elastic Compute Cloud (EC2) uses Xen virtualization to deliver cost-
effective, enterprise-class platforms to power user applications [32]. Xen virtualization
allows Amazon to separate the logical desktop, in the form of a virtual machine, from the
physical machine. Since the cloud environment uses virtualization to create one or more
virtual machines on a single host, a logical choice for a baseline network is a network
that uses a similar construct. This study uses a baseline network created with VM Ware
virtual machines (VMs) running on a single host machine. Software such as VMWare
and VirtualBox have long-standing reputations in the networking community for delivering
virtualization in this fashion. In order to test whether virtual machine (VM) instances in
the cloud behave as one would expect VMs to behave on any network, their performance

is compared to the performance of VMs on the baseline network.

B.2 Materials and Equipment
In order to conduct the baseline network experiments, the following materials and

equipment are needed:
1. Host Machine - The host machine has the following attributes:

72

(a) Windows 7 Enterprise Service Pack 1
(b) 8 GB Memory
(c) 64-bit Operating System

(d) Intel Xeon dual 3.00 GHz processors

2. VMWare Software - The host machine runs VMWare Desktop 9.0.0

3. Two Virtual Machines - The sender and receiver virtual machines created in VM Ware

have the following attributes:

(a) Ubuntu 13.0.4 64-bit operating system
(b) Intel Xeon 3 GHz processor

(¢) 1 Virtual CPU

(d) 1 GB Memory

(e) 410 GB Storage

4. Distributed Internet Traffic Generator(D-ITG) Software - Section 2.3.2 describes D-

ITG software. D-ITG software must be installed on each VM instance to generate

and receive traffic workload for the experiments.

5. Experimental Factors - Table 3.1 provides a list of experimental factors along with

their corresponding levels. Two of the five factors, Instance Type and Availability
Zone, only apply to the Amazon cloud environment, which is why the baseline

network considers the following three experimental factors:

(a) Packet Size Distribution - The D-ITG software allows users to set the packet

size distribution.

(b) Packet Arrival Distribution - The D-ITG software allows users to set the packet

arrival distribution.

73

(c) Traffic Protocol - The D-ITG software allows users to set the traffic protocol.

6. Data Input Spreadsheet Software - Software such as Microsoft Excel is used to

capture the results in spreadsheet form and perform mathematical operations such

as calculating averages.

B.3 Procedures and Process

B.3.1 PING.

Network latency provides insight regarding the quality of service provided on a
network. PING measures the Round-Trip Time (RTT), providing a measure of network
latency. In order to measure network latency on the baseline network, the PING utility is
run from one VM to the other VM, and statistics are captured regarding latency and packet
loss. The test is repeated five times, for a total of six experimental runs.

B.3.2 Workload Tests.

Capturing various performance metrics under diverse workload provides further
insight regarding network performance. Workload tests are constructed using the D-ITG
software. D-ITG needs to run on both sender and receiver VMs. Figure B.1 illustrates an
example of the commands used in D-ITG. Experimental runs follow the configurations
outlined in Figure B.2. The study uses 18 traffic workload configurations, that are
standardized across all platforms to allow comparison. Traffic configurations 1-18 represent
characteristics of traffic that is likely to be found on a real network. For example, as shown
in Figure B.2, Configuration 1 has TCP traffic with a constant packet size of 512 bytes
and a constant packet arrival distribution of 1,000 packets per second. Configuration 1 for
each of the four cloud platforms has the same traffic load, allowing a standard comparison
among all platforms. Experiments under each configuration are repeated five times, for a

total of six experimental runs per configuration.

74

D-ITG Receiver command:

./ITGRecv

D-ITG Sender Command:

./ITGSend -a 10.0.0.2 -1

Figure B.1: D-ITG Commands

sender.log —x receiver.log —m rttm -t 10000 -T TCP -c 40%& —-C 1000

Baseline Experiments: Configurations 1-18

Configuration Factors
Number Packet Size Distribution (Bytes) Packet Arrival Distribution (Packets/Sec) | Traffic Protocol
1 Constant: 512 Constant: 1,000 TCP
2 Poisson: Mean 512 Uniform: Min=256, Max=4096 TCP
3 Uniform: Min=256, Max=4096 Poisson: Mean 512 TCP
4 Constant: 512 Uniform: Min=256, Max=4096 TCP
5 Poisson: Mean 512 Constant: 1,000 TCP
6 Uniform: Min=256, Max=4096 Uniform: Min=256, Max=4096 TCP
7 Constant: 512 Poisson: Mean 512 TCP
8 Poisson: Mean 512 Poisson: Mean 512 TCP
9 Uniform: Min=256, Max=4096 Constant: 1,000 TCP
10 Constant: 512 Constant: 1,000 UDP
11 Poisson: Mean 512 Uniform: Min=256, Max=4096 ubpP
12 Uniform: Min=256, Max=4096 Poisson: Mean 512 ubp
13 Constant: 512 Uniform: Min=256, Max=4096 ubpP
14 Poisson: Mean 512 Constant: 1,000 UDP
15 Uniform: Min=256, Max=4096 Uniform: Min=256, Max=4096 ubP
16 Constant: 512 Poisson: Mean 512 ubppP
17 Poisson: Mean 512 Poisson: Mean 512 UDP
18 Uniform: Min=256, Max=4096 Constant: 1,000 uppP

Figure B.2: Baseline Experiment Configurations: 1-18

B.4 Results
B.4.1 PING Test Results.
Figure B.3 shows the results from the six experimental PING runs. The average

latency over all six experiments was 0.258 ms, and the average packet loss percentage

75

was O percent. Ping tests from each cloud configuration are compared to these values in

Chapter IV.

Baseline PING Measurements (Avg Latency in ms)

Avg Latency (ms) Avg Packet Loss (%)
0.26 0
1 2 3
Latency PacketLloss| Latency Packet Loss| Latency Packet Loss
0.253 0 0.291 0 0.286 0
q 5 6
Latency PacketLoss| Latency Packet Loss| Latency Packet Loss
0.222 0 0.235 0 0.26 0

Figure B.3: Baseline Ping Results

B.4.2 Workload Test Results.

Figure B.4 shows the packet loss values for each experimental run on the baseline
network, along with the variance associated with the experimental runs. Figures B.5, B.6
and B.7 show the same information for delay, jitter and throughput respectively. Figure
B.8 shows the mean values for all metrics for each of the 18 experimental configurations.

These mean values are compared with the mean values from each of the cloud platforms in

Chapter IV.

76

Baseline Packet Loss Measurements

Configuration Packet Loss Measurements (% of Packets)
Number

Variance|

[=Y

W ||| | B |W M

=
o

[y
[

[y
p¥

[y
w

'S

[y
un

(Y
[=)]

[y
=~

O |o|o|lo(ojo|lo|lo|lojJo|o|lo|lo(o|Oo|lo (OO
l=Ri=Ri=Ri=Ri=Ri=Ri=Ri=Ji=] i=Ri=Ri=Ri=Ri=Ri=Ri=Ri=Ji=] 1."]
O o|lo|jlo(oo|jloolojJo|o|lo|lo(o|Oo|0 (O | Ojw
oOlo|o|lo|lo|o|lo|o|lojJo(o|jlo|jlo|jlo|o|lo|o|O]lk
O|o|o|lo(oo|lo|o|lojJOo|Oo|lOo|lOo(Oo|O|Oo |[O|Ojwn

O | o|o|lo(ojo|jloolojo|o|lo|lo(o|lo|lo (o0

[y
oo

Figure B.4: Baseline Packet Loss

B.5 Conclusion
Experimental runs have sufficiently small variance to allow adequate comparison of

mean values. These configurations represent typical traffic expected on a real network.

77

Baseline Delay Measurements

Configuration

Delay Measurements (ms)

Number 1 2 3 4 5 6| Variance
1 81.825(81.694 81.739| 81.694 81.755 81.755 0.002
2 101.029] 101.029| 101.025| 101.029(101.029(101.029 0.000
3 101.014| 101.023| 101.024| 101.024| 101.024| 101.024 0.000
4 81.700[81.694 81.688| 81.689 81.689 81.691 0.000
5 101.026] 101.019| 101.019| 101.025(101.024| 101.022 0.000
6 101.024| 101.025| 101.023| 101.023| 101.024| 101.024 0.000
7 81.693 81.733 81.692| 81.691 81.692 81.695 0.000
8 81.686| 81.686 81.689| 81.722 81.695 81.695 0.000
9 101.023| 101.024| 101.023| 101.024| 101.025(101.024 0.000
10 81.698 81.69 81.687| 81.687 81.695 81.702 0.000
11 101.03] 101.029 101.03 101.03 101.03 101.03 0.000
12 101.027| 101.028| 101.027| 101.027| 101.026| 101.027 0.000
13 81.72| 81711 81.694| 81.687 81.694 81.689 0.000
14 4.851 4.869 4.89 4.88 4.876 4.888 0.000
15 101.028| 101.028 101.027| 101.028(101.028| 101.025 0.000
16 81.688 81.69 81.695 81.69 81.685 81.683 0.000
17 81.688| 81.685 81.686| 81.693 81.7 81.693 0.000
18 101.028| 101.026| 101.027| 101.027| 101.027| 101.028 0.000

Figure B.5: Baseline Delay

78

Baseline Jitter Measurements

Configuration

Jitter Measurements (ms)

Number 1 2 3 4 5 6| Variance
1 0.061 0.039 0.051 0.039 0.058 0.058] 0.000
2 0.039 0.037 0.048 0.043 0.046 0.043 0.000
3 0.109 0.08 0.075 0.066 0.072 0.072 0.000
4 0.044 0.037 0.03 0.029 0.031 0.032 0.000
5 0.045 0.086 0.088 0.055 0.071 0.057, 0.000
6 0.071 0.061 0.077 0.075 0.071 0.065 0.000
7 0.035 0.043 0.037 0.034 0.036 0.037, 0.000
8 0.028 0.028 0.03 0.039 0.038 0.038 0.000
9 0.079 0.075 0.073 0.076 0.065 0.079 0.000
10 0.051 0.04 0.035 0.035 0.045 0.048 0.000
11 0.041 0.044 0.042 0.042 0.034 0.038 0.000
12 0.054 0.047 0.057 0.057 0.062 0.052 0.000
13 0.053 0.048 0.04 0.032 0.042 0.037, 0.000
14 0.069 0.042 0.044 0.041 0.035 0.052 0.000
15 0.044 0.044 0.057 0.055 0.049 0.056] 0.000
16 0.039 0.039 0.041 0.04 0.032 0.031 0.000
17 0.035 0.032 0.033 0.04 0.04 0.039 0.000
18 0.046 0.059 0.054 0.05 0.05 0.046) 0.000

Figure B.6: Baseline Jitter

79

Baseline Throughput Measurements

Configuration

Throughput Measurements (Mb/s)

Number 1 2 3 4 5 6 Variance
1 1.555 2.094] 2.079 2.079 2.082 2.082 0.046
2 1.535 1.540 1.548 1.555 1.528 1.555 0.000
3 6.622 6.454] 6.513 6.429 6.451 6.512 0.005
4 1.539 1.534 1.550 1.569 1.540 1.537 0.000
5 2.100 2.090 2.112 2.090 2.076 2.102 0.000
6 6.514 6.374] 6.504 6.732 6.592 6.671 0.017
7 1.510 1.511 1.502 1.509 1.509 1.514 0.000
8 1.509 1.515 1.507 1.510 1.502 1.508 0.000
9 8.936 9.015 8.857 8.914 8.830 8.794 0.006
10 2.095 2.083 2.090 2.086 2.090 2.085 0.000
11 1.549 1.538 1.541 1.554 1.554 1.534] 0.000
12 6.367 6.379 6.460 6.395 6.340 6.450 0.002
13 1.542 1.552 1.541 1.547 1.556 1.536 0.000
14 1.780 2.325 2.005 2.528 2.666 1.483 0.208
15 6.682 6.682 6.493 6.589 6.618 6.594 0.005
16 1.512 1.504 1.512 1.508 1.514 1.504] 0.000
17 1.508 1.510 1.509 1.512 1.510 1514 0.000
18 8.900 8.788 8.931 8.874 8.874 9.111 0.012

Figure B.7: Baseline Throughput

80

Baseline Mean Values

Configuration

Baseline Network

Baseline Network

Baseline Network

Baseline Network

Number Throughput (Mb/s)] Packet Loss (%) Delay (ms) Jitter (ms)
1 2.00] 0 81.74 0.05
2 1.54 0 101.03 0.04
3 6.50 0 101.02 0.08
4 1.55 0 81.69 0.03
5 2.09 0 101.02 0.07,
6 6.56 0 101.02 0.07]
7 151 0 81.70 0.04]
8 151 0 81.70 0.03
9 8.89 0 101.02 0.07]
10 2.09 0 81.69 0.04
11 1.55 0 101.03 0.04
12 6.40] 0 101.03 0.05
13 1.55 0 81.70 0.04
14 2.13 0 4.88] 0.05
15 6.61 0 101.03 0.05
16 151 0 81.69 0.04
17 151 0 81.69 0.04
18 8.91 0 101.03 0.05

Figure B.8: Baseline Mean Values

81

Appendix C:

Cloud Experiments

His appendix describes the process of conducting performance testing in the cloud.
T The cloud is divided into four unique platforms that are independently compared to
the baseline platform. The discussion begins with a brief introduction and theory, followed
by the materials and equipment needed to conduct the experiments. After describing the
procedures and process of conducting the experiments, results are presented along with a

concluding statement regarding the results.

C.1 Introduction and Theory

In order to test the feasibility of using the Amazon cloud as a networking and
distributed application prototyping testbed, cloud performance must be considered.
Network architectures constructed in the cloud should show similar behavior to other
networks that have been traditionally used for this purpose. Each cloud platform is provided
statistically equivalent workload to the workload provided to the baseline platform,

performance metrics are gathered, and results are interpreted.

C.2 Materials and Equipment
In order to conduct the cloud experiments, the following materials and equipment are

needed:
1. List of Factors - Here are the experimental factors:

(a) Availability Zone - When creating an instance in the Amazon Cloud, users are

given the option to choose an Availability Zone for that instance.

(b) Packet Size Distribution - The D-ITG software allows users to set the packet

size distribution.

82

(c) Packet Arrival Distribution - The D-ITG software allows users to set the packet

arrival distribution.

(d) Traffic Protocol - The D-ITG software allows users to set the traffic protocol.

(e) Instance Type - When creating an instance in the Amazon Cloud, users are

given the option to choose an instance type.

2. Amazon Cloud VM Instances - Instances must be configured in the cloud according

to the factor levels specified in each experimental run.

3. Distributed Internet Traffic Generator(D-ITG) Software - Section 2.3.2 describes D-

ITG software. D-ITG software must be installed on each VM instance to generate

and receive traffic workload for the experiments.

4. Cloud Configurations - This study uses four unique cloud platforms for testing:

(a) Cloud Platform 1 - The first cloud platform consists of two MI1.Medium

instance types that are in the same Availability Zone.

(b) Cloud Platform 2 - The second cloud platform consists of two M1.Large

instance types that are in the same Availability Zone.

(c) Cloud Platform 3 - The third cloud platform consists of two MI1.Medium

instance types that are in different Availability Zones.

(d) Cloud Platform 4 - The fourth cloud platform consists of two M 1.Large instance

types that are in different Availability Zones.

5. Constant Parameters - While the five experimental factors will be varied during the

experiments, the remaining parameters are not directly altered:

(a) Workload Generator Random Seed - The D-ITG software randomly alters this

value before each experimental run to ensure that traffic loads of the same

83

configuration are not exactly the same, although they are statistically equivalent.
For example, the software may send TCP traffic with 512 byte packets, in a
Poisson distribution, with a mean value of 512 packets per second during one
experimental run. During another experimental run of that same configuration,
the software will not send packets in an identical pattern as the previous run,
but will ensure that it achieves a mean value of 512 packets per second. This
makes is difficult for a system to optimize its performance based solely on
the test itself, as the system must handle a variety of different, yet statistically

equivalent conditions.

(b) Operating System - All cloud VMs run Linux Ubuntu Server 13.04.

(c) Processor - All cloud VMs run a 64 bit processor.

(d) Virtual CPUs - The number of virtual CPUs in a VM varies by instance type.

M1.Medium instances have one virtual CPU, and M 1.Large instances have two

virtual CPUs.

(e) Amazon EC2 Compute Units (ECU) - ECUs vary by instance type. M1.Medium

instances have two ECUs and M1.Large instances have four ECUs.

(f) Memory - Memory capacity varies by instance type. M1.Medium instances

have 3.75 GB of memory, and M1.Large instances have 7.5 GB of memory.

(g) Storage - Storage capacity varies by instance type. M1.Medium instances have
410 GB of storage, and M1.Large instances have two drives with 420 GB of

storage each.

(h) Network Resource Reservation - Amazon promises a moderate network

resource reservation for both the M1.Medium and M1.Large instances.

84

@

Amazon Region - Since this parameter was not chosen as a factor through the

Plackett-Burman design, the region is held constant. All cloud experiments take

place in the Virginia region.

(j) Time of Day - Since this parameter was not chosen as a factor through the

(k)

@

Plackett-Burman design, the experiments are not restricted to any particular

time of day.

Performance of Underlying Amazon Hardware - This parameter is not under

the user’s control. This study assumes that Amazon’s underlying hardware is

sufficient to perform cloud experiments.

Performance of Amazon Network Management/Virtualization Software - This

parameter is not under the user’s control. This study assumes that Amazon’s
network management and virtualization software is sufficient to conduct cloud

experiments.

6. Data Input Spreadsheet Software - Software such as Microsoft Excel is used to

capture the results in spreadsheet form and perform mathematical operations such

as calculating averages.

C.3 Procedures and Process

C.3.1 PING Tests.

PING measures the Round-Trip Time (RTT), providing a measure network latency.

Since there are four unique cloud configurations, there are four different sets of PING tests.

The PING tests consist of running the PING utility from one VM instance to the other VM

instance and capturing the statistics that are native to the utility. Each test is repeated five

times, for a total of six experimental runs per cloud configuration, or 24 total experimental

runs.

85

C.3.2 Workload Tests.
Configurations 1-18 represent characteristics of traffic that is likely to be found on a

real network. For example, packet arrival distributions range up to 4096 packets per second.

C.4 Results

C.4.1 PING Test Results.

Figure C.1 shows the results of the ping experiments. For example, Cloud Platform 1
is in the upper left hand corner. The bottom half of the rectangle shows the results of each
of the six experimental runs. Cloud Platform 1 has latency values in milliseconds of 0.64,
0.62, 0.59, 0.65, 0.58 and 0.61. In all cases, Cloud Platform 1 had zero packet loss. As a
result, Cloud Platform 1 has an average latency of 0.62 ms. The other three configurations
are interpreted in a similar fashion. Here is a summary of the cloud configurations PING

tests:

1. Cloud Platform 1 - Cloud Platform 1 has an average latency of 0.62 ms, and O percent

packet loss.

2. Cloud Platform 2 - Cloud Platform 2 has an average latency of 0.52 ms, and O percent

packet loss.

3. Cloud Platform 3 - Cloud Platform 3 has an average latency of 1.25 ms, and 0 percent

packet loss.

4. Cloud Platform 1 - Cloud Platform 1 has an average latency of 1.22 ms, and 0 percent

packet loss.

These values are compared to the PING tests from the baseline network in Chapter IV.

86

Cloud Platform
PING Tests

Cloud Platform 1: Cloud Platform 2:
PING Measurments (Avg Latency in ms) PING Measurments (Avg Latency in ms)
Avg Latency (ms) Avg Packet Loss (%) Avg Latency (ms) Avg Packet Loss (%)
0.62 [1] 0.52 [1]
1 2 3 2 3
Latency | Packet Loss | Latency | Packet Loss | Latency | Packet Loss Latency Packet Loss Latency Packet Loss Latency Packet Loss
0.637 [1] 0.618 [1] 0.59 1] 0.545 1] 0.551 [1] 0.537 [1]
4 5 & 4 5 &
Latency | Packet Loss | Latency | Packet Loss | Latency | Packet Loss Latency Packet Loss Latency Packet Loss Latency Packet Loss
0.654] 0.582 0 0.61 0 0.502 0 0.441] 0.544]
Cloud Platform 3: Cloud Platform 4:
PING Measurments (Avg Latency in ms) PING Measurments (Avg Latency in ms)
Avg Latency (ms) Avg Packet Loss (%) Avg Latency (ms) Avg Packet Loss (%)
1.25 0 1.22 0
1 2 3 2 3
Latency | Packet Loss | Latency | Packet Loss | Latency | Packet Loss Latency Packet Loss Latency Packet Loss Latency Packet Loss
1.202 0 11 [1] 1.136 1] 1211 1] 1.235 0 1.189 0
4 5 & 4 5 &
Latency | Packet Loss | Latency | Packet Loss | Latency | Packet Loss Latency Packet Loss Latency Packet Loss Latency Packet Loss
1239 0 1.14 1] 1.705 0 1.252 0 1.228 0 1.233 0

Figure C.1: Cloud Ping Tests Results

C.4.2 Workload Test Results.
This section describes the workload test results from each of the four cloud platforms.

These metrics are independently compared to the metrics from the baseline platform in

Chapter IV.
C.4.2.1 Cloud Configuration 1.

Figures C.2, C.3, C.4 and C.5 show the measurements for packet loss, delay, jitter and
throughput respectively under Cloud Platform 1, along with corresponding variances under

all 18 traffic workload configurations. This data is used to construct the mean values shown

87

in Figure C.6. Mean values for Cloud Platform 1 are compared to the mean values of the

baseline platform as well as other cloud platforms in Chapter IV.

Cloud Platform 1 Packet Loss

Configuration Packet Loss Measurements (% of Packets)
Number 1 2 3 4 5 & Variance
1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0
a8 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0

Figure C.2: Cloud Platform 1 Packet Loss

C.4.2.2 Cloud Configuration 2.

Figures C.7, C.8, C.9 and C.10 show the measurements for packet loss, delay, jitter

and throughput respectively under Cloud Platform 2, along with corresponding variances

under all 18 traffic workload configurations. This data is used to construct the mean values

88

Cloud Platform 1 Delay

Configuration Delay Measurements (ms)
Number 1 2 3 4 5 6, Variance
1 75.997 74.871 74.710 74.553 74.493 73.987 0.451
2 71778 TL.757 71.372 71.232 71.215 70.943 0.107]
3 69.802 69.643 69.251 639.027 68.976 68.586 0.203
4 68.485 67.558 67.564 67.390 67.213 66.805 0.311
5 65.776 65.560 65.591 65.354 65.398 65.379 0.027]
6 64.921 64.735 64.591 64.666 64.381 64.383 0.047]
7 46.856 47.312 47.519 47.681 47.833 47.987 0.165
8 64.280 64.127 64.243 64.113 63.976 63.487 0.084
9 62.995 63.146 62.453 62.487 62.523 62.610 0.086
10 62.568 62.403 62.034 62.266 62.129 61.857 0.066
1 61.483 61.364 60.993 60.775 60.654 60.307 0.157]
12 47.563 47.784 48.004] 47.525 48.346 48.523 0.169
13 59.973 59.845 59.758 59.446 59.478 59.487 0.050
14 59.293 559.027 58.929 58.862] 58.872 58.511 0.065
15 57.703 57.809 57.399 57.175 57.005 57.162] 0.104]
16 57.701 57.612] 57.524) 57.304) 57.268 57.198 0.042]
17 57.091 56.922] 56.845 56.718 56.678 56.327 0.068
18 55.920 55.666 55.531 55.419 55.403 55.139 0.070

Figure C.3: Cloud Platform 1 Delay

shown in Figure C.11. Mean values for Cloud Platform 2 are compared to the mean values

of the baseline platform as well as other cloud platforms in Chapter IV.

C.4.2.3 Cloud Configuration 3.
Figures C.12, C.13, C.14 and C.15 show the measurements for packet loss, delay, jitter
and throughput respectively under Cloud Platform 3, along with corresponding variances

under all 18 traffic workload configurations. This data is used to construct the mean values

&9

Cloud Platform 1 Jitter

Configuration Jitter Measurements (ms)
Number 1] 2 3 4 5 6 Variance
1 0.015 0.285 0.024; 0.014 0.048 0.016 0.012]
2 0.343 0.037] 0.241 0.182] 0.133 0.057] 0.013
3 0.067, 0.092] 0.113 0.057] 0.076 0.145 0.001
4 0.027 0.019 0.020 0.025 0.024 0.020 0.000
5 0.046 0.031 0.036 0.221 0.034] 0.025 0.006
6 0.130 0.159 0.117 0.220 0.080 0.398 0.013
7 0.039 0.013 0.015 0.016 0.015 0.024] 0.000
3 0.051 0.141 0.026 0.057] 0.054 0.044) 0.002]
9 0.179 0.315 0.116 0.059 0.092] 0.126 0.008
10 0.019 0.020 0.024; 0.017] 0.032] 0.012] 0.000
11 0.017 0.019 0.031 0.026 0.060 0.020 0.000
12 0.088 0.050 0.045 0.329 0.381 0.392] 0.026
13 0.029 0.013 0.032 0.022] 0.025 0.025 0.000
14 0.026 0.016 0.016 0.038 0.028 0.020 0.000
15 0.018 0.243 0.035 0.226 0.308 0.992] 0.127]
16 0.037, 0.021 0.029 0.068 0.017] 0.013 0.000
17 0.024, 0.037] 0.027] 0.031 0.025 0.054] 0.000
18 0.064 0.063 0.076 0.076 0.056 0.047 0.000

Figure C.4: Cloud Platform 1 Jitter

shown in Figure C.16. Mean values for Cloud Platform 3 are compared to the mean values

of the baseline platform as well as other cloud platforms in Chapter IV.

C.4.2.4 Cloud Configuration 4.
Figures C.17, C.18, C.19 and C.20 show the measurements for packet loss, delay, jitter
and throughput respectively under Cloud Platform 4, along with corresponding variances

under all 18 experimental configurations. This data is used to construct the mean values

90

Cloud Platform 1 Throughput

Configuration Throughput Measurements (Mb/s)

Number 1 2| 3 4 5 | Variance
3.833 3.834 3.828 3.834 3.830 3.828 0.000

2 1.5911 1.929 1.517] 1.911 1.919 1.917 0.000

3 8.730 8.615] 8.539 8.608| B8.622 8.574 0.004

4 1.918 1.923 1.887] 1.903) 1.922 1.915 0.000

5 3.839 3.827| 3.835 3.825 3.829 3.832 0.000

6 8.174 8.167 8.078 8.111 8.137 8.260) 0.004

7 2.019 2.022| 2.026 2.023] 2.018 2.022 0.000

a8 2.022| 2.022| 2.021 2.024 2.019 2.020) 0.000

9 16.255 16.280] 16.300 16.195 16.246 16.103) 0.005

10 3.833 3.832] 3.832 3.837) 3.838 3.838 0.000
11 1.882 1.909 1.923 1.917 1.917] 1.905 0.000
12 8.575 8.615 8.585 8.569) 8.596 8.531 0.001

13 1.915 1.923 1.922 1.921 1.920 1.906 0.000

14 3,544 3.5842| 3.846 3.546| 3.850 3.841 0.000

15 8.248 8.200| 7.958 8.000] 8.141 8.261 0.016
16 2.026 2.024 2.024 2.028 2.023 2,023 0.000

17 2.018 2.021 2.021 2.024 2.026 2,023 0.000

18 16.299 16.126{ 16.266 16.108(16.294 16.340 0.009

Figure C.5: Cloud Platform 1 Throughput

shown in Figure C.21. Mean values for Cloud Platform 4 are compared to the mean values

of the baseline platform as well as other cloud platforms in Chapter IV.

91

Cloud Platform 1 Mean Values

Configuration

Cloud Platform 1|

Cloud Platform 1

Cloud Platform3)

Cloud Platform 1

Number Throughput (Mb/s) Packet Loss (%) Delay (ms) Jitter (ms)
1 3.83 0 74.77 0.07]
2 1.92) 0 71.38 0.17]
3 8.61 0 69.21 0.09
4 1.91 0 67.50 0.02]
5 3.83 0 65.51 0.07]
6 8.15 0 54.62 0.18
7 2.02| 0 47.53 0.02
8 2.02 0 54.04 0.06
9 16.23 0 62.70 0.15
10 3.83 0 62.21 0.02]
11 1.91 0 60.93 0.03
12 8.58 0 47.96 0.22]
13 1.92| 0 59.66 0.02
14 3.84] 0 58.92] 0.02
15 8.13 0 57.38 0.30
16 2.02) 0 57.43 0.03
17 2.02 0 56.76 0.03
18 16.24 0 55.51 0.06

Figure C.6: Cloud Platform 1 Mean Values

92

Cloud Platform 2 Packet Loss

Configuration

Packet Loss Measurements (% of Packets)

Number

2 3 4|

Variance

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

B R EERREBlouw vy aewNR

o

0.002

ololo olo (o|lo|lo o |0 |0

=jis] i=li=][=Ri=Ri=l=Ri=li=RI=01-]

0.000

0.0

=5

0.1

23]

0.004

[=Hi=NHi=Ri=1 I=Ri=Ri=Ri=Ri=Hi=Ri=i=Ri=NH1.]

0.000

0.03

0.02

0.000

o

0.000

0.000

ololo ool ool o]lo lololo olo]lo

0.000

=Ri=Ri=NI=]

oolojlo|lo|o|lo ool o]l 0|0 |0 | O |O|0

olololo o o

0.17 0.01

o olo|lo oo

0.005

Figure C.7: Cloud Platform 2 Packet Loss

93

Cloud Platform 2 Delay

Configuration

Delay Measurements (ms)

Number 1 2 3 4 5 6] Variance
1 3.308 3.498 3.665 3.861 3.939 4.181 0.100
2 4.399 4.635 4.560 4.943 4.828 4.965 0.051
3 16.214 16.206 16.295 15.997 15.198 14.575 0.703
4 6.154 £.260 6.354 £.529 6.715 £.802 0.066
5 7.211 7.382 7.718 7.749 7.940 7.933 0.089
6 8.185 8.463 8.453 8.577 8.705 8.953 0.067
7 77.359 78.360 78.532 79.089 79.370 79.798 0.746
8 8.946 8.187 7.634 £.977 6.446 6.737 0.909
9 10.850 11.021 11.277 11.448 11.412 11.596 0.079
10 11.767 11.914 12.285 12.257 12.683 12.639 0.137
11 12.849 13.001 13.304 13.468 13.403 13.561 0.078
12 81.670 82.288 82.570 82.979 83.418 83.931 0.657
13 14.725 15.229 15.198 15.129 15.285 15.429 0.057
14 15.751 15.862 15.887 16.204 16.349 16.555 0.101
15 17.517 17.451 17.607 18.359 18.191 18.115 0.154
16 18.762 18.778 18.918 19.256 19.202 19.324 0.063
17 19.703 19.685 19.992 20.316 20.083 20.413 0.092
18 20.948 21.142 21.282 21.574 21.809 21.851 0.136

Figure C.8: Cloud Platform 2 Delay

94

Cloud Platform 2 lJitter

Configuration

Jitter Measurements (ms)

Number 1 2 3| 4 5 6| Variance
1 0.035 0.020 0.036 0.085 0.021 0.105 0.001
2 0.094 0.068 0.043 0.133 0.054 0.052 0.001
3 0.027 0.057 0.025 0.254 0.037 0.033 0.008
4 0.113 0.076 0.040 0.092 0.084 0.070 0.001
5 0.053 0.034 0.022 0.054 0.064 0.033 0.000
6 0.000085 0.085 0.063 0.058 0.050 0.087 0.001
7 0.000031 0.109 0.058 0.059 0.038 0.058 0.001
8 0.000037 0.014 0.014 0.011 0.012 0.013 0.000
9 0.000037 0.054 0.085 0.075 0.039 0.048 0.001
10 0.000026 0.021 0.031 0.033 0.064 0.037 0.000
11 0.00004 0.050 0.077 0.073 0.050 0.082 0.001
12 0.000996 0.105 0.950 0.954 0.943 0.982 0.219
13 0.000055 0.297 0.291 0.048 0.044 0.075 0.018
14 0.000039 0.058 0.019 0.037 0.044 0.051 0.000
15 0.001035 0.988 0.980 0.104 0.986 0.983 0.232
16 0.000043 0.036 0.026 0.080 0.024 0.020 0.001
17 0.000046 0.019 0.037 0.061 0.017 0.048 0.001
18 0.000689 0.073 0.721 0.738 0.703 0.701 0.124

Figure C.9: Cloud Platform 2 Jitter

95

Cloud Platform 2 Throughput

Configuration Throughput Measurements (Mb/s)
Number 1 2 3 4 5 6 Variance
1 3.792 3.843 3.748] 3.763 3.797 3.714 0.002
2 1.868 1.879 1.800 1.904 1.8594 1.502 0.000
3 8.596 8.700 8.547| 8.557 8.589 8.464 0.006
4 1.861]] 1.912 1.803] 1.878 1.890 1.883 0.000
5 3.739 3.748 3.727 3.714 3.769 3.817 0.001
6 7.929 8.097 7.830) 7.893 5.024 7.890) 0.010
7 1.879 1.991 1.890 1.992 1.993 2.005 0.000
8 2.021] 2.026 2.020 2.022 2.024 2.023 0.000
9 15.900 16.666 15.747 15,779 15.340 16.065) 0.193
10 3.775 3.794 3.749 3.733 3.749 3.817 0.001
11 1.870 1.921 1.813] 1.873 1.881 1.504 0.000
12 8.624 8.561 8.533] 8.538 8.471 8.543 0.002
13 1.877 1.888 1.924 1.920 1.906 1.510, 0.000
14 3.752 3.776 3.815] 3.776 3.773 3.746 0.001
15 8.004 7.939 8.131] 7.989 8.056 8.255) 0.013
16 2.012 2.013 1.999 2.025 2.000 2.02]] 0.000
17 1.975 1.998 2.014] 2.000 2.003 2.011]] 0.000
18 15.773 15.785 16.033 15,835 16.224 15.91§ 0.030

Figure C.10: Cloud Platform 2 Throughput

96

Cloud Platform 2 Mean Values

Configuration

Cloud Platform 2

Cloud Platform 2

Cloud Platform 2

Cloud Platform 2

Number Throughput (Mb/s)| Packet Loss (%) Delay (ms) Jitter {ms)|
1 3.78 0 3.74 0.05]
2 1.89 0 4.72) 0.07
3 8.58 0 15.86 0.07
4 1.89 0 6.47 0.08
5 3.75 0 7.66 0.04]
6 7.94 0 8.56 0.06
7 1.99 0 78.75 0.05
8 2.02 0 7.49 0.01]
9 15.92 0 11.27 0.05
10 3.77 0.02 12.26 0.03]
11 1.89 0 13.26 0.06
12 8.55 0.04 82.81 0.66
13 1.90 0 15.17 0.13]
14 3.77 0.01 16.10 0.03
15 8.06 0 17.87 0.67
16 2.01 0 19.04 0.03]
17 2.00 0 20.03] 0.03)
18 15.93 0.03 21.43 0.49

Figure C.11: Cloud Platform 2 Mean Values

97

Cloud Platform 3 Packet Loss

Variance

6

Packet Loss Measurements (% of Packets)

Configuration

Number

10
11
12
13
14
15
16
17
18

Figure C.12: Cloud Platform 3 Packet Loss

98

Cloud Platform 3 Delay

Configuration

Delay Measurements (ms)

Number 1 2 3| 4 5 6] Variance
1 7.810 8.208 8.995 9.682 10.111 10.007 0.929
2 14.891 15.441 15.846 16.255 16.042 16.562 0.359
3 19.736 20.504 20.769 20.732 21.760 22.141 0.765
4 23.251] 23.762 24.048] 24.697 25.021] 25.48% 0.700
5 26.163 26.593 27.108] 27.492 27.860] 28.260 0.617
6 29.812 29.199] 29.771] 30.495 30.895 31.535 0.729
7 34.665 33.057 32.827 33.976 34.181 34.716 0.640
8 35.238 35.873 36.046 36.668 37.053 37.396 0.648
9 37.587 37.724 38.734 38.714 39.136 39.814 0.717
10 41.990] 42.434] 42.824] 43.291 43.741] 44.181 0.673
11 44,683 45.208] 46.196] 46.085 47.001] 47.440 1.106
12 47.363 47.892 48.476] 48.768 49.161] 49.617 0.681
13 50.856 51.439 51.850 52.266 52.638 53.020 0.633
14 56.408] 56.833 57.336] 57.754 58.231] 58.589 0.689
15 58.932 59.351 59.880 60.371 60.841 61.367 0.840
16 62.441] 63.017] 63.454] 63.402 63.593 64.685 0.550
17 64.547 65.771 66.164 66.479 66.371 67.353 0.862
18 72419 71131} 72.239] 72.635 72.855 73.270 0.530

Figure C.13: Cloud Platform 3 Delay

99

Cloud Platform 3 lJitter

Configuration

Jitter Measurements (ms)

Number 1 2 3 4 5 6 Variance
1 0.017 0.011 0.014 0.014 0.012 0.224 0.007
2 0.108 0.131 0.115 0.102 0.110 0.120 0.000
3 0.576 0.372 0.589 0.830 0.274 0.434 0.039
4 0.111 0.106 0.216 0.120 0.130 0.116 0.002
5 0.013 0.019 0.021 0.018 0.021 0.020 0.000
6 0.797 0.295 0.173 0.509 0.547 0.511 0.047
7 0.574 0.037 0.416 0.016 0.147 0.016 0.057
8 0.021 0.025 0.124 0.010 0.018 0.023 0.002
9 0.244 0.270 0.124 0.186 0.225 0.201 0.003
10 0.015 0.016 0.016 0.019 0.012 0.012 0.000
11 0.017 0.018 0.016 0.373 0.012 0.016 0.021
12 0.993 0.905 0.794 0.783 0.794 0.765 0.008
13 0.017 0.013 0.014 0.011 0.016 0.020 0.000
14 0.022 0.019 0.014 0.015 0.016 0.018 0.000
15 0.779 1.042 0.930 0.894 0.880 0.750 0.011
16 0.033 0.056 0.031 0.361 0.493 0.013 0.043
17 0.446 0.014 0.016 0.025 0.328 0.013 0.038
18 0.691 0.442 0.450 0.478 0.683 0.671 0.015

Figure C.14: Cloud Platform 3 Jitter

100

Cloud Platform 3 Throughput

Configuration

Throughput Measurements (Mb/s)

Number 1 2 3 4 5 & Variance
1 3.820 3.811 3.825 3.804] 3.809 3.813 0.000
2 1.894 1.930 1.925 1.906 1.915 1.917 0.000
3 8.208 8.110 7.985 7.609 7.764 7.813 0.051
4 1.928 1.895 1.909 1.921 1.909 1.921 0.000
5 3.816 3.927 3.81] 3.912 3.807| 3.815 0.003
6 7.556 7.877 7.805 7.580 7.616 7.780 0.018
7 2.019 2.026 2.017] 2.026 2.017 2.024 0.000
8 2.026 2.026 2.027 2.024] 2.025 2.022 0.000
9 15.054 15.151 14,452 15.272 15.670) 14.397 0.242
10 3.84] 3.904 3.925 3.805 3.886 3.822 0.002
11 1.914 1.914 1.907 1.889 1.893] 1.937 0.000
12 8.549 8.609 8.650 8.548 8.607, 8.613 0.002
13 1.913 1893 1.924 1.917 1.898 1.891 0.000
14 3.83] 3.952 3.923 3.953 3.894 3.794) 0.004
15 8.094 8.154 8.187 8.012 8.045 8.06e9 0.004
16 2.02] 2.015 2.020 2.024 2.025 2.024 0.000
17 2.027, 2.023 2.024 2.024] 2.022] 2.024 0.000
18 16.302 16.337 16,281 16.380 16.292 16.225 0.003

Figure C.15: Cloud Platform 3 Throughput

101

Cloud Platform 3 Mean Values

Configuration Cloud Platform 3| Cloud Platform 3| Cloud Platform 3| Cloud Platform 3
Number Throughput (Mb/s)] Packet Loss (%) Delay (ms) Jitter (ms)
1 381 0 9.14 0.05

2 1.91 0 15.84 0.11

3 7.91 0 20.94 0.51

4 1.91 0 24.38 0.13

5 3.85 0 27.25 0.02

6 7.70 0 30.28 0.47

7 2.02 0 33.90 0.20

8 2.03 0 36.38 0.04

9 15.00 0 38.62 0.21

10 3.86 0 43.08 0.02

1 1.91 0 46.11 0.08

12 8.60 0 48.55 0.84

13 1.91 0 52.01 0.02

14 3.89| 0 57.53 0.02

15 8.09| 0 60.12 0.88

16 2.02 0 63.43 0.16

17 2.02 0 66.11 0.14

18 16.30 0 72.42 0.57

Figure C.16: Cloud Platform 3 Mean Values

102

Cloud Platform 4 Packet Loss

Configuration

Packet Loss Measurements (% of Packets)

Number 1 2 3 5 6] Variance
1 0 0 0 0 0 0 0.000
2 0 0 0 0 0 0 0.000
3 0 0 0 0 0 0 0.000
4 0 0 0 0 0 0 0.000
5 0 0 0 0 0 0 0.000
-] 0 0 0 0 0 0 0.000
7 0 0 0 0 0 0 0.000
8 0 0 0 0 0 0 0.000
9 0 0 0 0 0 0 0.000

10 0 0 0 0 0 0 0.000
11 0 0 0 0 0 0 0.000
12 0 0 0 0 0 0 0.000
13 0.520 0 0 0 0 0 0.045
14 0 0 0 0 0 0 0.000
15 0 0 0 0 0 0 0.000
16 0 0 0 0 0 0 0.000
17 0 0 0 0 0 0 0.000
18 0 0 0.040 0 0 0 0.000

Figure C.17: Cloud Platform 4 Packet Loss

103

Cloud Platform 4 Delay

Configuration

Delay Measurements (ms)

3]

Number 1 2 4 5 6| Variance
1 34.805 35.067 34.496 34.298 33.571 34.313 0.264
2 26.506] 28.142 27.719 27.140] 26.745 26.202 0.550
3 25.487] 24.89% 24.372 23.941 23.108 24571 0.667
4 21.953 21.40 20.990] 20.658| 20.123 19.611 0.724
5 18.794 18.148 17.764 17.199 16.999 16.426 0.728
6 15.729 15.153 14.642 14.289 13.688 14.346 0.513
7 5.202 5.766 6.341 6.832 6.837 7.761 0.810
8 8.414 8.991 9.382 9.897 10.309 10.771 0.757
9 11.353 11.969 12.392 12.936 12.931 13.378 0.551
10 14.692 15.077 15.717 16.185 16.644 17.070 0.835
11 17.859 18.385 18.928 19.381 19.867 20.372 0.872
12 20.710] 21.067 21.706] 22.360] 22.383 23.306 0.913
13 62.295 63.228 62.940 62.697 62.510 62.328 0.134
14 27.0701 27.679 28.166| 28.566| 29.050 29.547 0.818
15 29.791 30.523 30.773 31.234] 31.898 32.294 0.846
16 33.374] 33.868 34.351 34.924] 35.457 35.899 0.923
17 37.687 38.292 38.693 39.153 39.542 40.242 0.831
18 41.665 41.178 41.4201 42.162 42.756 43.192 0.624

Figure C.18: Cloud Platform 4 Delay

104

Cloud Platform 4 lJitter

Configuration Jitter Measurements (ms)

Number 1 2 3 4 5 6 Variance
1 0.017 0.015 0.025 0.034 0.021 0.033 0.000

2 0.236 0.139 0.169 0.143 0.173 0.135 0.001

3 0.034 0.039 0.030 0.036 0.033 0.033 0.000

4 0.153 0.119 0.131 0.169 0.146 0.149 0.000,

5 0.036 0.012 0.021 0.013 0.150 0.024 0.003

6 0.173 0.178 0.135 0.191 0.156 0.144 0.000

7 0.027, 0.027 0.026 0.020 0.347 0.023 0.017,

3 0.030 0.015 0.015 0.017 0.034 0.026 0.000

9 0.038 0.040 0.061 0.043 0.160, 0.163 0.004

10 0.016] 0.082 0.013 0.015 0.011 0.014 0.001
11 0.012 0.017 0.012 0.018 0.017 0.014 0.000
12 0.533 0.767 0.572 0.305 0.765 0.264 0.047

13 0.114 0.052 0.030 0.040 0.028 0.030 0.001
14 0.022 0.015 0.011 0.015 0.021 0.014 0.000,
15 0.601 0.319 0.677 0.626 0.486 0.575 0.017,
16 0.013 0.021 0.195 0.079 0.017 0.015 0.005
17 0.012 0.018 0.019 0.020 0.049 0.015 0.000
18 0.398 0.326 0.609 0.383 0.449 0.408 0.009

C.5 Conclusion

Experimental runs have sufficiently small variance to allow adequate comparison of

Figure C.19: Cloud Platform 4 Jitter

mean values. These configurations represent typical traffic expected on a real network.

105

Cloud Platform 4 Throughput

Configuration

Throughput Measurements (Mb/s)

Number 1 2 3 4 5 6 Variance
1 3.777 3.886 3.829 3.807 3.801 3.840 0.001
2 1.885 1.906 1.893 1.883 1.904 1.872 0.000
3 8.346 8.503 8.427 8.555 8.401 8.384 0.006
4 1.906 1.898 1.896 1.900 1.895 1.909 0.000
5 3.853 3.880 3.841 3.864 3.799 3.817 0.001
6 7.951 8.102 8.073 7.981 8.174 7.986 0.007
7 2.007 1.997 1.987 1.987 2.017 2.010 0.000
8 2.009 2.000 1.988 1.967 2.002 2.024 0.000
9 15.992 16.073 15.882 15.814 15.441 15.705 0.051
10 3.850 3.844 3.883 3.869 3.803 3.899 0.001
11 1.883 1.872 1.892 1.879 1.872 1.882 0.000
12 8.630 8.451 8.362 8.582 8.194 8.408 0.025
13 1.903 1.877 1.898 1.834 1.895 1.892 0.000
14 3.809 3.843 3.743 3.795 3.779 3.823 0.001
15 8.164 7.976 8.031 8.209 8.135 7.958 0.011
16 2.022 1.988 1.999 1.997 1.996 2.015 0.000
17 1.998 1.985 2.010 2.000 2.002 2.027 0.000
18 16.381 16.231 15.962 15.984 15.578 15.916 0.077

Figure C.20: Cloud Platform 4 Throughput

106

Cloud Platform 4 Mean Values

Configuration

Cloud Platform 4

Cloud Platform 4

Cloud Platform 4

Cloud Platform 4]

Config Number| Throughput (Mb/s)| Packet Loss (%) Delay (ms) Jitter (ms)
1 3.82 0 34.43 0.02
2 1.89 0 27.08 0.17
3 8.44 0 24.40 0.03
4 1.90 0 20.79 0.144
5 3.8 0 17.56 0.04]
6 3.04 0 14.64 0.16
7 2.00 0 6.46) 0.08
8 2.00 0 9.63] 0.02
9 15.82 0 12.49 0.08
10 3.86 0 15.90 0.03
11 1.88 0 19.13] 0.02
12 8.44 0 21.92 0.53
13 1.89 0.09 62.67 0.05
14 3.80 0 28.35 0.02
15 8.08 0 31.09 0.55
16 2.00 0 34.65 0.06
17 2.00 0 3893 0.02
18 16.01 0.01 42.06 0.43

Figure C.21: Cloud Platform 4 Mean Values

107

[1]
(2]

[3]

(4]

[5]

[6]

(71

[8]

[9]

[10]

[11]

[12]

[13]

Bibliography

Uoregon.edu. Interpreting Test Statistics, p-values, and Significance.

Guruprasad, Shashikiran B. [Issues in Integrated Network Experimentation Using
Simulation and Emulation, Diss. The University of Utah edition, Aug 2005.

Guruprasad, Sashi, Robert Ricci, and Jay Lepreau. Integrated Network Experimenta-
tion using Simulation and Emulation, Testbeds and Research Infrastructures for the
Development of Networks and Communities, 2005. Tridentcom 2005. First Interna-
tional Conference on IEEE, 2005 edition, Feb 2005.

Sadasivarao, Abhinava S. Everest: Network Emulation Infrastructure in the
Cloud, MS thesis. Accessed from: http://www.contrib.andrew.cmu.edu/ asada-
siv/everest/docs/everestedition, May 2012.

Jianli Pan. A Survey of Network Simulation Tools: Current Status and Future De-
velopments, Accessed from http://www.cse.wustl.edu/~jain/cse567-08/ftp/simtools/
index.html#2 edition, Nov 2008.

J. Heidemann et. al. Effects of Detail in Wireless Network Simulation, Proc. of the
SCS Multiconference on Distributed Simulation, pp 3-11 edition, Jan 2001.

K. Fall. Network Emulation in the Vintns Simulator, Proc. of the 4th IEEE
Symposium on Computers and Communications edition, 1999.

A. Vahdat et al. Scalability and Accuracy in a Large-scale Network Emulator, Proc. of
the Fifth Symposium on Operating Systems Design and Implementation, pp 271-284,
Boston, MA edition, Dec 2002.

et al. B. White. An Integrated Experimental Environment for Distributed Systems
and Networks, Proc. of the Fifth Symposium on Operating Systems Design and
Implementation, pp. 255-270, Boston, MA edition, Dec 2002.

Network Simulator (ns-3), Accessed on Aug 4, 2013 from http://www.nsnam.org/
edition.

O.T. Inc. Network Modeling, Accessed on Aug 4, 2013 from http://www.opnet.com/
solutions/network_rd/modeler.html edition.

Flux Research Group. Emulab - Network Emulation Testbed Home, Accessed on Aug
4, 2013 from http://www.emulab.net/ edition.

Emulab Experiments, Accessed on Aug 4, 2013 from http:www.emulab.net/expubs.
php edition.

108

[14] M.P. Kasick et. al. Towards Fingerpointing in the Emulab Dynamic Distributed
System, Proceedings of the 3rd Conference on USENIX Workshop on Real, Large
Distributed Systems, vol 3, pp 7, Berkeley, CA edition, 2006.

[15] B. Chun et. al. Planetlab: An Overlay Testbed For Broad-coverage Services,
SIGCOMM Comput. Commun. Rev., vol 33, no. 3, pp 3-12 edition, Jul 2003.

[16] Planetlab, Accessed on Aug 4, 2013 from http://www.planet-lab.org/ edition.

[17] A. Bavier et. al. In VINI Veritas: Realistic and Controlled Network Experimentation,
Proceedings of the 2006 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, SIGCOMM, 06, New York, NY, pp
3-14 edition, 2006.

[18] O. Hodson M. Handley and E. Kohler. Xorp: An Open Platform for Network
Research, SIGCOMM Comput. Commun. Rev, vol 33, no. 1, pp 53-57 edition, Jan
2003.

[19] et. al E. Kohler. The Click Modular Router, ACM Trans. Comput. Syst., vol. 18, no.
3, pp. 263-297 edition, Aug 2000.

[20] C. Francesco. Amazon EC2, Accessed on dec 10, 2013 from http://aws.amazon.com/
ec?/ edition.

[21] Dipartimento di Informatica e Sistemistica Universita’ degli Studi di Napoli “Federico
II” (Italy). D-ITG, Distributed Internet Traffic Generator, Accessed on Dec 9, 2013
from http://traffic.comics.unina.it/software/ITG/ edition, Jul 2013.

[22] Alberto Dainotti Botta, Alessio and Antonio Pescape. A Tool for the Gen-
eration of Realistic Network Workload for Emerging Networking Scenarios,
Computer Networks, 2012, vol 56, num 15, pp 3531-3547. Accessed from
http://dx.doi.org/10.1016/j.comnet.2012.02.019 edition, Mar 2012.

[23] R. Plackett and J. Burman. The Design of Optimum Multifactorial Experiments,
Biometrika 33(4), pp 305-25 edition, Jun 1946.

[24] D. Roddy. Satellite Communications (3 ed), Mcgraw-Hill. ISBN 0-07-137176-1
edition, 2001.

[25] R. Millar. Response in Man-Machine Conversation Transactions, Proc. AFIPS Fall
Joint Computer Conference, vol 33, pp 267-277 edition, 2001.

[26] M. Claypool and K. Claypool. Latency Can Kill: Precision and ”Deadline in
Online Games, Accessed on Mar 1, 2014 from http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.177.8852&rep=rep1&type=pdf edition, 2010.

[27] Openeaagles.org. OpenEaagles Simulation Framework, Accessed on Dec 20, 2013
from http://www.openeaagles.org/wiki/doku.php edition, 2001.

109

[28] P. Hintgens. ZeroMQ - The Guide, Accessed on Dec 10, 2013 from http://zguide.
zeromgq.org/page:all edition, Sep 2013.

[29] C. Francesco. Europycon2011: Implementing Distributed Application us-
ing ZeroM(Q, Accessed on Dec 10, 2013 from http://www.slideshare.net/
fcrippa/europycon201 1-implementing-distributed-application-using-zeromq edition,
Jul 2011.

[30] J. Ledolter and A. Swersey. Testing 1-2-3: Experimental Design with Applications
in Marketing and Service Operations, Standford University Press, ISBN 978-0-8047-
5612-9 edition, 2007.

[31] R. Bose and K. Kishen. On the Problem of Confounding in the General Symmetrical
Factorial Design, Sankhya edition, May 1940.

[32] citrix.com. Citrix and Amazon Web Services(AWS), Accessed on Dec 17, 2013 from
http://www.citrix.com/global-partners/amazon-web-services.html edition.

110

REPORT DOCUMENTATION PAGE OM’E’,’Gf’;%‘i,”j;’mg

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)|2. REPORT TYPE 3. DATES COVERED (From — To)
27-03-2014 Master’s Thesis Jun 2012-Mar 2014
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

i 5b. GRANT NUMBER
Leveraging The Cloud For

Integrated Network Experimentation

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER
Beam, Brian A., Major, USA

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
. . NUMBER

Air Force Institute of Technology

Graduate School of Engineering and Management (AFIT/EN)

2950 Hobson Way AFIT-ENG-14-M-11

WPAFB, OH 45433-7765

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

Office of the Secretary of Defense 0SD

Attn: Dr. Vincent Lillard

1700 Defense Pentagon 11. SPONSOR/MONITOR’S REPORT

Washington D.C. 20301 NUMBER(S)

e-mail: vincent.lillard.ctr@osd.mil

B PISTRIBUTIGN LAVALABILITY, STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

UPPLEMENTARY NOTES
llahlss work 1s declared a work of the U.S. Government and is not subject to copyright protection in the United States.

]ﬁhé\ ggﬂ?éf :crhis research is to determine the feasibility of performing integrated network experimentation using cloud
services. This research uses performance metrics to compare computing architectures constructed in the cloud to
architectures that run on traditional networks. If so, then cloud network architectures will display the same expected
behavior as traditional network architectures, thus allowing the construction of networking testbeds at potentially
substantial cost savings. Since the Amazon cloud does not support broadcast or multicast traffic, distributed applications
face a challenge. Many distributed applications use broadcast or multicast to communicate real-time information.

This research includes a case study for developing a distributed network application in the cloud which overcomes the
restriction on broadcast and multicast traffic. During performance testing, the baseline network and cloud network
configurations are provided statistically equivalent traffic workload. Metrics such as packet loss, delay, jitter and
throughput are compared to determine relative performance. Analysis of the experimental results shows that in each
case, the cloud network configurations performed at or above the performance level of the baseline network. Therefore,
the public cloud infrastructure is suitable for performing integrated network experimentation. This research continues
Project Everest’s efforts to leverage cloud services for network experimentation. Project Everest is a framework which
aims to combine emulation and cloud infrastructure into a single testbed using the Amazon Elastic Compute Cloud
(EC2). Their tests indicate satisfactory cloud performance, but they recommend testing cloud network performance
under various workload. This research carries out those performance tests.

. SUBJECT TERMS
éﬁmlﬂaﬁ%n, ﬁmul\flation, Cloud, Network Testbed, Integrated Network Experimentation

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF | 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
a. REPORT |b. ABSTRACT|c. THIS PAGE| ABSTRACT Fces | Dr- Douglas Hodson (AFIT/ENG)
19b. TELEPHONE NUMBER (include area code)
Y Y Y U 122 | (937) 255-3636 x4719 douglas.hodson@afit.edu

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

